Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Face-to-face partition of 3D space with identical well-centered tetrahedra

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00452193" target="_blank" >RIV/67985840:_____/15:00452193 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/s10492-015-0115-5" target="_blank" >http://dx.doi.org/10.1007/s10492-015-0115-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10492-015-0115-5" target="_blank" >10.1007/s10492-015-0115-5</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Face-to-face partition of 3D space with identical well-centered tetrahedra

  • Popis výsledku v původním jazyce

    The motivation for this paper comes from physical problems defined on bounded smooth domains $Omega $ in 3D. Numerical schemes for these problems are usually defined on some polyhedral domains $Omega _h$ and if there is some additional compactness result available, then the method may converge even if $Omega _h to Omega $ only in the sense of compacts. Hence, we use the idea of meshing the whole space and defining the approximative domains as a subset of this partition. endgraf Numerical schemes for which quantities are defined on dual partitions usually require some additional quality. One of the used approaches is the concept of emph {well-centeredness}, in which the center of the circumsphere of any element lies inside that element. We show that the one-parameter family of Sommerville tetrahedral elements, whose copies and mirror images tile 3D, build a well-centered face-to-face mesh. Then, a shape-optimal value of the parameter is computed.

  • Název v anglickém jazyce

    Face-to-face partition of 3D space with identical well-centered tetrahedra

  • Popis výsledku anglicky

    The motivation for this paper comes from physical problems defined on bounded smooth domains $Omega $ in 3D. Numerical schemes for these problems are usually defined on some polyhedral domains $Omega _h$ and if there is some additional compactness result available, then the method may converge even if $Omega _h to Omega $ only in the sense of compacts. Hence, we use the idea of meshing the whole space and defining the approximative domains as a subset of this partition. endgraf Numerical schemes for which quantities are defined on dual partitions usually require some additional quality. One of the used approaches is the concept of emph {well-centeredness}, in which the center of the circumsphere of any element lies inside that element. We show that the one-parameter family of Sommerville tetrahedral elements, whose copies and mirror images tile 3D, build a well-centered face-to-face mesh. Then, a shape-optimal value of the parameter is computed.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applications of Mathematics

  • ISSN

    0862-7940

  • e-ISSN

  • Svazek periodika

    60

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    15

  • Strana od-do

    637-651

  • Kód UT WoS článku

    000367089900003

  • EID výsledku v databázi Scopus

    2-s2.0-84950308302