The Ascoli property for function spaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00464468" target="_blank" >RIV/67985840:_____/16:00464468 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.topol.2016.08.026" target="_blank" >http://dx.doi.org/10.1016/j.topol.2016.08.026</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.topol.2016.08.026" target="_blank" >10.1016/j.topol.2016.08.026</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Ascoli property for function spaces
Popis výsledku v původním jazyce
The paper deals with Ascoli spaces Cp(X) and Ck(X) over Tychonoff spaces X. The class of Ascoli spaces X, i.e. spaces X for which any compact subset K of Ck(X) is evenly continuous, essentially includes the class of kR-spaces. First we prove that if Cp(X) is Ascoli, then it is κ-Fréchet–Urysohn. If X is cosmic, then Cp(X) is Ascoli iff it is κ-Fréchet–Urysohn. This leads to the following extension of a result of Morishita: If for a Čech-complete space X the space Cp(X) is Ascoli, then X is scattered. If X is scattered and stratifiable, then Cp(X) is an Ascoli space. Consequently: (a) If X is a complete metrizable space, then Cp(X) is Ascoli iff X is scattered. (b) If X is a Čech-complete Lindelöf space, then Cp(X) is Ascoli iff X is scattered iff Cp(X) is Fréchet–Urysohn. Moreover, we prove that for a paracompact space X of point-countable type the following conditions are equivalent: (i) X is locally compact. (ii) Ck(X) is a kR-space. (iii) Ck(X) is an Ascoli space.
Název v anglickém jazyce
The Ascoli property for function spaces
Popis výsledku anglicky
The paper deals with Ascoli spaces Cp(X) and Ck(X) over Tychonoff spaces X. The class of Ascoli spaces X, i.e. spaces X for which any compact subset K of Ck(X) is evenly continuous, essentially includes the class of kR-spaces. First we prove that if Cp(X) is Ascoli, then it is κ-Fréchet–Urysohn. If X is cosmic, then Cp(X) is Ascoli iff it is κ-Fréchet–Urysohn. This leads to the following extension of a result of Morishita: If for a Čech-complete space X the space Cp(X) is Ascoli, then X is scattered. If X is scattered and stratifiable, then Cp(X) is an Ascoli space. Consequently: (a) If X is a complete metrizable space, then Cp(X) is Ascoli iff X is scattered. (b) If X is a Čech-complete Lindelöf space, then Cp(X) is Ascoli iff X is scattered iff Cp(X) is Fréchet–Urysohn. Moreover, we prove that for a paracompact space X of point-countable type the following conditions are equivalent: (i) X is locally compact. (ii) Ck(X) is a kR-space. (iii) Ck(X) is an Ascoli space.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Topology and its Applications
ISSN
0166-8641
e-ISSN
—
Svazek periodika
214
Číslo periodika v rámci svazku
1 December
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
35-50
Kód UT WoS článku
000389391700003
EID výsledku v databázi Scopus
2-s2.0-84989181029