Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The Ascoli property for function spaces

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00464468" target="_blank" >RIV/67985840:_____/16:00464468 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.topol.2016.08.026" target="_blank" >http://dx.doi.org/10.1016/j.topol.2016.08.026</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.topol.2016.08.026" target="_blank" >10.1016/j.topol.2016.08.026</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The Ascoli property for function spaces

  • Popis výsledku v původním jazyce

    The paper deals with Ascoli spaces Cp(X) and Ck(X) over Tychonoff spaces X. The class of Ascoli spaces X, i.e. spaces X for which any compact subset K of Ck(X) is evenly continuous, essentially includes the class of kR-spaces. First we prove that if Cp(X) is Ascoli, then it is κ-Fréchet–Urysohn. If X is cosmic, then Cp(X) is Ascoli iff it is κ-Fréchet–Urysohn. This leads to the following extension of a result of Morishita: If for a Čech-complete space X the space Cp(X) is Ascoli, then X is scattered. If X is scattered and stratifiable, then Cp(X) is an Ascoli space. Consequently: (a) If X is a complete metrizable space, then Cp(X) is Ascoli iff X is scattered. (b) If X is a Čech-complete Lindelöf space, then Cp(X) is Ascoli iff X is scattered iff Cp(X) is Fréchet–Urysohn. Moreover, we prove that for a paracompact space X of point-countable type the following conditions are equivalent: (i) X is locally compact. (ii) Ck(X) is a kR-space. (iii) Ck(X) is an Ascoli space.

  • Název v anglickém jazyce

    The Ascoli property for function spaces

  • Popis výsledku anglicky

    The paper deals with Ascoli spaces Cp(X) and Ck(X) over Tychonoff spaces X. The class of Ascoli spaces X, i.e. spaces X for which any compact subset K of Ck(X) is evenly continuous, essentially includes the class of kR-spaces. First we prove that if Cp(X) is Ascoli, then it is κ-Fréchet–Urysohn. If X is cosmic, then Cp(X) is Ascoli iff it is κ-Fréchet–Urysohn. This leads to the following extension of a result of Morishita: If for a Čech-complete space X the space Cp(X) is Ascoli, then X is scattered. If X is scattered and stratifiable, then Cp(X) is an Ascoli space. Consequently: (a) If X is a complete metrizable space, then Cp(X) is Ascoli iff X is scattered. (b) If X is a Čech-complete Lindelöf space, then Cp(X) is Ascoli iff X is scattered iff Cp(X) is Fréchet–Urysohn. Moreover, we prove that for a paracompact space X of point-countable type the following conditions are equivalent: (i) X is locally compact. (ii) Ck(X) is a kR-space. (iii) Ck(X) is an Ascoli space.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Topology and its Applications

  • ISSN

    0166-8641

  • e-ISSN

  • Svazek periodika

    214

  • Číslo periodika v rámci svazku

    1 December

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    16

  • Strana od-do

    35-50

  • Kód UT WoS článku

    000389391700003

  • EID výsledku v databázi Scopus

    2-s2.0-84989181029