Dunford–Pettis type properties and the Grothendieck property for function spaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00532217" target="_blank" >RIV/67985840:_____/20:00532217 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s13163-019-00336-9" target="_blank" >https://doi.org/10.1007/s13163-019-00336-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13163-019-00336-9" target="_blank" >10.1007/s13163-019-00336-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dunford–Pettis type properties and the Grothendieck property for function spaces
Popis výsledku v původním jazyce
For a Tychonoff space X, let Ck(X) and Cp(X) be the spaces of real-valued continuous functions C(X) on X endowed with the compact-open topology and the pointwise topology, respectively. If X is compact, the classic result of A. Grothendieck states that Ck(X) has the Dunford–Pettis property and the sequential Dunford–Pettis property. We extend Grothendieck’s result by showing that Ck(X) has both the Dunford–Pettis property and the sequential Dunford–Pettis property if X satisfies one of the following conditions: (1) X is a hemicompact space, (2) X is a cosmic space (= a continuous image of a separable metrizable space), (3) X is the ordinal space [0 , κ) for some ordinal κ, or (4) X is a locally compact paracompact space. We show that if X is a cosmic space, then Ck(X) has the Grothendieck property if and only if every functionally bounded subset of X is finite. We prove that Cp(X) has the Dunford–Pettis property and the sequential Dunford–Pettis property for every Tychonoff space X, and Cp(X) has the Grothendieck property if and only if every functionally bounded subset of X is finite.
Název v anglickém jazyce
Dunford–Pettis type properties and the Grothendieck property for function spaces
Popis výsledku anglicky
For a Tychonoff space X, let Ck(X) and Cp(X) be the spaces of real-valued continuous functions C(X) on X endowed with the compact-open topology and the pointwise topology, respectively. If X is compact, the classic result of A. Grothendieck states that Ck(X) has the Dunford–Pettis property and the sequential Dunford–Pettis property. We extend Grothendieck’s result by showing that Ck(X) has both the Dunford–Pettis property and the sequential Dunford–Pettis property if X satisfies one of the following conditions: (1) X is a hemicompact space, (2) X is a cosmic space (= a continuous image of a separable metrizable space), (3) X is the ordinal space [0 , κ) for some ordinal κ, or (4) X is a locally compact paracompact space. We show that if X is a cosmic space, then Ck(X) has the Grothendieck property if and only if every functionally bounded subset of X is finite. We prove that Cp(X) has the Dunford–Pettis property and the sequential Dunford–Pettis property for every Tychonoff space X, and Cp(X) has the Grothendieck property if and only if every functionally bounded subset of X is finite.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Revista Mathématica Complutense
ISSN
1139-1138
e-ISSN
—
Svazek periodika
33
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
ES - Španělské království
Počet stran výsledku
14
Strana od-do
871-884
Kód UT WoS článku
000567467200011
EID výsledku v databázi Scopus
2-s2.0-85076085610