Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Dunford–Pettis type properties and the Grothendieck property for function spaces

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00532217" target="_blank" >RIV/67985840:_____/20:00532217 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s13163-019-00336-9" target="_blank" >https://doi.org/10.1007/s13163-019-00336-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s13163-019-00336-9" target="_blank" >10.1007/s13163-019-00336-9</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Dunford–Pettis type properties and the Grothendieck property for function spaces

  • Popis výsledku v původním jazyce

    For a Tychonoff space X, let Ck(X) and Cp(X) be the spaces of real-valued continuous functions C(X) on X endowed with the compact-open topology and the pointwise topology, respectively. If X is compact, the classic result of A. Grothendieck states that Ck(X) has the Dunford–Pettis property and the sequential Dunford–Pettis property. We extend Grothendieck’s result by showing that Ck(X) has both the Dunford–Pettis property and the sequential Dunford–Pettis property if X satisfies one of the following conditions: (1) X is a hemicompact space, (2) X is a cosmic space (= a continuous image of a separable metrizable space), (3) X is the ordinal space [0 , κ) for some ordinal κ, or (4) X is a locally compact paracompact space. We show that if X is a cosmic space, then Ck(X) has the Grothendieck property if and only if every functionally bounded subset of X is finite. We prove that Cp(X) has the Dunford–Pettis property and the sequential Dunford–Pettis property for every Tychonoff space X, and Cp(X) has the Grothendieck property if and only if every functionally bounded subset of X is finite.

  • Název v anglickém jazyce

    Dunford–Pettis type properties and the Grothendieck property for function spaces

  • Popis výsledku anglicky

    For a Tychonoff space X, let Ck(X) and Cp(X) be the spaces of real-valued continuous functions C(X) on X endowed with the compact-open topology and the pointwise topology, respectively. If X is compact, the classic result of A. Grothendieck states that Ck(X) has the Dunford–Pettis property and the sequential Dunford–Pettis property. We extend Grothendieck’s result by showing that Ck(X) has both the Dunford–Pettis property and the sequential Dunford–Pettis property if X satisfies one of the following conditions: (1) X is a hemicompact space, (2) X is a cosmic space (= a continuous image of a separable metrizable space), (3) X is the ordinal space [0 , κ) for some ordinal κ, or (4) X is a locally compact paracompact space. We show that if X is a cosmic space, then Ck(X) has the Grothendieck property if and only if every functionally bounded subset of X is finite. We prove that Cp(X) has the Dunford–Pettis property and the sequential Dunford–Pettis property for every Tychonoff space X, and Cp(X) has the Grothendieck property if and only if every functionally bounded subset of X is finite.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Revista Mathématica Complutense

  • ISSN

    1139-1138

  • e-ISSN

  • Svazek periodika

    33

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    ES - Španělské království

  • Počet stran výsledku

    14

  • Strana od-do

    871-884

  • Kód UT WoS článku

    000567467200011

  • EID výsledku v databázi Scopus

    2-s2.0-85076085610