Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Nonseparable closed vector subspaces of separable topological vector spaces

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00481891" target="_blank" >RIV/67985840:_____/17:00481891 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/s00605-016-0876-2" target="_blank" >http://dx.doi.org/10.1007/s00605-016-0876-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00605-016-0876-2" target="_blank" >10.1007/s00605-016-0876-2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Nonseparable closed vector subspaces of separable topological vector spaces

  • Popis výsledku v původním jazyce

    In 1983 P. Domański investigated the question: For which separable topological vector spaces E, does the separable space [InlineEquation not available: see fulltext.] have a nonseparable closed vector subspace, where c is the cardinality of the continuum? He provided a partial answer, proving that every separable topological vector space whose completion is not q-minimal (in particular, every separable infinite-dimensional Banach space) E has this property. Using a result of S.A. Saxon, we show that for a separable locally convex space (lcs) E, the product space [InlineEquation not available: see fulltext.] has a nonseparable closed vector subspace if and only if E does not have the weak topology. On the other hand, we prove that every metrizable vector subspace of the product of any number of separable Hausdorff lcs is separable.

  • Název v anglickém jazyce

    Nonseparable closed vector subspaces of separable topological vector spaces

  • Popis výsledku anglicky

    In 1983 P. Domański investigated the question: For which separable topological vector spaces E, does the separable space [InlineEquation not available: see fulltext.] have a nonseparable closed vector subspace, where c is the cardinality of the continuum? He provided a partial answer, proving that every separable topological vector space whose completion is not q-minimal (in particular, every separable infinite-dimensional Banach space) E has this property. Using a result of S.A. Saxon, we show that for a separable locally convex space (lcs) E, the product space [InlineEquation not available: see fulltext.] has a nonseparable closed vector subspace if and only if E does not have the weak topology. On the other hand, we prove that every metrizable vector subspace of the product of any number of separable Hausdorff lcs is separable.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GF16-34860L" target="_blank" >GF16-34860L: Logika a topologie v Banachových prostorech</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Monatshefte für Mathematik

  • ISSN

    0026-9255

  • e-ISSN

  • Svazek periodika

    182

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    AT - Rakouská republika

  • Počet stran výsledku

    9

  • Strana od-do

    39-47

  • Kód UT WoS článku

    000392032500005

  • EID výsledku v databázi Scopus

    2-s2.0-84954460567