Contact discontinuities in multi-dimensional isentropic Euler equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00489412" target="_blank" >RIV/67985840:_____/18:00489412 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Contact discontinuities in multi-dimensional isentropic Euler equations
Popis výsledku v původním jazyce
In this note we partially extend the recent nonuniqueness results on admissible weak solutions to the Riemann problem for the 2D compressible isentropic Euler equations. We prove non-uniqueness of admissible weak solutions that start from the Riemann initial data allowing a contact discontinuity to emerge.
Název v anglickém jazyce
Contact discontinuities in multi-dimensional isentropic Euler equations
Popis výsledku anglicky
In this note we partially extend the recent nonuniqueness results on admissible weak solutions to the Riemann problem for the 2D compressible isentropic Euler equations. We prove non-uniqueness of admissible weak solutions that start from the Riemann initial data allowing a contact discontinuity to emerge.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ17-01694Y" target="_blank" >GJ17-01694Y: Matematická analýza parciálních diferenciálních rovnic popisujících nevazké proudění</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electronic Journal of Differential Equations
ISSN
1072-6691
e-ISSN
—
Svazek periodika
2018
Číslo periodika v rámci svazku
94
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
000430885900001
EID výsledku v databázi Scopus
2-s2.0-85046144841