Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Contact discontinuities in multi-dimensional isentropic Euler equations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00489412" target="_blank" >RIV/67985840:_____/18:00489412 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Contact discontinuities in multi-dimensional isentropic Euler equations

  • Popis výsledku v původním jazyce

    In this note we partially extend the recent nonuniqueness results on admissible weak solutions to the Riemann problem for the 2D compressible isentropic Euler equations. We prove non-uniqueness of admissible weak solutions that start from the Riemann initial data allowing a contact discontinuity to emerge.

  • Název v anglickém jazyce

    Contact discontinuities in multi-dimensional isentropic Euler equations

  • Popis výsledku anglicky

    In this note we partially extend the recent nonuniqueness results on admissible weak solutions to the Riemann problem for the 2D compressible isentropic Euler equations. We prove non-uniqueness of admissible weak solutions that start from the Riemann initial data allowing a contact discontinuity to emerge.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ17-01694Y" target="_blank" >GJ17-01694Y: Matematická analýza parciálních diferenciálních rovnic popisujících nevazké proudění</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Electronic Journal of Differential Equations

  • ISSN

    1072-6691

  • e-ISSN

  • Svazek periodika

    2018

  • Číslo periodika v rámci svazku

    94

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    1-11

  • Kód UT WoS článku

    000430885900001

  • EID výsledku v databázi Scopus

    2-s2.0-85046144841