An extension of compact operators by compact operators with no nontrivial multipliers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00499152" target="_blank" >RIV/67985840:_____/18:00499152 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4171/JNCG/316" target="_blank" >http://dx.doi.org/10.4171/JNCG/316</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/JNCG/316" target="_blank" >10.4171/JNCG/316</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An extension of compact operators by compact operators with no nontrivial multipliers
Popis výsledku v původním jazyce
We construct a noncommutative, separably represented, type I and approximately finite dimensional $C^*$-algebra such that its multiplier algebra is equal to its unitization. This algebra is an essential extension of the algebra $mathcal K(ell_2(mathfrak{c}))$ of compact operators on a nonseparable Hilbert space by the algebra $mathcal K(ell_2)$ of compact operators on a separable Hilbert space, where $mathfrak{c}$ denotes the cardinality of continuum. Although both $mathcal K(ell_2(mathfrak{c}))$ and $mathcal K(ell_2)$ are stable, our algebra is not. This sheds light on the permanence properties of the stability in the nonseparable setting. Namely, unlike in the separable case, an extension of a nonseparable $C^*$-algebra by $mathcal K(ell_2)$ does not have to be stable. Our construction can be considered as a noncommutative version of Mrówka’s $Psi$-space, a space whose one point compactification is equal to its Cech–Stone compactification and is induced by a special uncountable family of almost disjoint subsets of $mathbb{N}$.
Název v anglickém jazyce
An extension of compact operators by compact operators with no nontrivial multipliers
Popis výsledku anglicky
We construct a noncommutative, separably represented, type I and approximately finite dimensional $C^*$-algebra such that its multiplier algebra is equal to its unitization. This algebra is an essential extension of the algebra $mathcal K(ell_2(mathfrak{c}))$ of compact operators on a nonseparable Hilbert space by the algebra $mathcal K(ell_2)$ of compact operators on a separable Hilbert space, where $mathfrak{c}$ denotes the cardinality of continuum. Although both $mathcal K(ell_2(mathfrak{c}))$ and $mathcal K(ell_2)$ are stable, our algebra is not. This sheds light on the permanence properties of the stability in the nonseparable setting. Namely, unlike in the separable case, an extension of a nonseparable $C^*$-algebra by $mathcal K(ell_2)$ does not have to be stable. Our construction can be considered as a noncommutative version of Mrówka’s $Psi$-space, a space whose one point compactification is equal to its Cech–Stone compactification and is induced by a special uncountable family of almost disjoint subsets of $mathbb{N}$.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Noncommutative Geometry
ISSN
1661-6952
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
27
Strana od-do
1503-1529
Kód UT WoS článku
000453796600009
EID výsledku v databázi Scopus
2-s2.0-85061322081