A non-stable C*-algebra with an elementary essential composition series
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00523592" target="_blank" >RIV/67985840:_____/20:00523592 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.ams.org/journals/proc/2020-148-05/S0002-9939-2019-14814-0/" target="_blank" >https://www.ams.org/journals/proc/2020-148-05/S0002-9939-2019-14814-0/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/proc/14814" target="_blank" >10.1090/proc/14814</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A non-stable C*-algebra with an elementary essential composition series
Popis výsledku v původním jazyce
A $ C^*$-algebra $ mathcal {A}$ is said to be stable if it is isomorphic to $ mathcal {A} otimes mathcal {K}(ell _2)$. Hjelmborg and Rørdam have shown that countable inductive limits of separable stable $ C^*$-algebras are stable. We show that this is no longer true in the nonseparable context even for the most natural case of an uncountable inductive limit of an increasing chain of separable stable and AF ideals: we construct a GCR, AF (in fact, scattered) subalgebra $ mathcal {A}$ of $ mathcal {B}(ell _2)$, which is the inductive limit of length $ omega _1$ of its separable stable ideals $ mathcal {I}_alpha $ ( $ alpha <omega _1$) satisfying $ mathcal {I}_{alpha +1}/mathcal {I}_alpha cong mathcal {K}(ell _2)$ for each $ alpha <omega _1$, while $ mathcal {A}$ is not stable. The sequence $ (mathcal {I}_alpha )_{alpha leq omega _1}$ is the GCR composition series of $ mathcal {A}$ which in this case coincides with the Cantor-Bendixson composition series as a scattered $ C^*$-algebra. $ mathcal {A}$ has the property that all of its proper two-sided ideals are listed as $ mathcal {I}_alpha $'s for some $ alpha <omega _1$, and therefore the family of stable ideals of $ mathcal {A}$ has no maximal element. nBy taking $ mathcal {A}'=mathcal {A}otimes mathcal {K}(ell _2)$ we obtain a stable $ C^*$-algebra with analogous composition series $ (mathcal {J}_alpha )_{alpha <omega _1}$ whose ideals $ mathcal {J}_alpha $ are isomorphic to $ mathcal {I}_alpha $ for each $ alpha <omega _1$. In particular, there are nonisomorphic scattered $ C^*$-algebras whose GCR composition series $ (mathcal {I}_alpha )_{alpha leq omega _1}$ satisfy $ mathcal {I}_{alpha +1}/mathcal {I}_alpha cong mathcal {K}(ell _2)$ for all $ alpha <omega _1$, for which the composition series differs first at $ alpha =omega _1$.n
Název v anglickém jazyce
A non-stable C*-algebra with an elementary essential composition series
Popis výsledku anglicky
A $ C^*$-algebra $ mathcal {A}$ is said to be stable if it is isomorphic to $ mathcal {A} otimes mathcal {K}(ell _2)$. Hjelmborg and Rørdam have shown that countable inductive limits of separable stable $ C^*$-algebras are stable. We show that this is no longer true in the nonseparable context even for the most natural case of an uncountable inductive limit of an increasing chain of separable stable and AF ideals: we construct a GCR, AF (in fact, scattered) subalgebra $ mathcal {A}$ of $ mathcal {B}(ell _2)$, which is the inductive limit of length $ omega _1$ of its separable stable ideals $ mathcal {I}_alpha $ ( $ alpha <omega _1$) satisfying $ mathcal {I}_{alpha +1}/mathcal {I}_alpha cong mathcal {K}(ell _2)$ for each $ alpha <omega _1$, while $ mathcal {A}$ is not stable. The sequence $ (mathcal {I}_alpha )_{alpha leq omega _1}$ is the GCR composition series of $ mathcal {A}$ which in this case coincides with the Cantor-Bendixson composition series as a scattered $ C^*$-algebra. $ mathcal {A}$ has the property that all of its proper two-sided ideals are listed as $ mathcal {I}_alpha $'s for some $ alpha <omega _1$, and therefore the family of stable ideals of $ mathcal {A}$ has no maximal element. nBy taking $ mathcal {A}'=mathcal {A}otimes mathcal {K}(ell _2)$ we obtain a stable $ C^*$-algebra with analogous composition series $ (mathcal {J}_alpha )_{alpha <omega _1}$ whose ideals $ mathcal {J}_alpha $ are isomorphic to $ mathcal {I}_alpha $ for each $ alpha <omega _1$. In particular, there are nonisomorphic scattered $ C^*$-algebras whose GCR composition series $ (mathcal {I}_alpha )_{alpha leq omega _1}$ satisfy $ mathcal {I}_{alpha +1}/mathcal {I}_alpha cong mathcal {K}(ell _2)$ for all $ alpha <omega _1$, for which the composition series differs first at $ alpha =omega _1$.n
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Proceedings of the American Mathematical Society
ISSN
0002-9939
e-ISSN
—
Svazek periodika
148
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
2201-2215
Kód UT WoS článku
000521585500035
EID výsledku v databázi Scopus
2-s2.0-85082960009