Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Representations of monotone Boolean functions by linear programs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00511322" target="_blank" >RIV/67985840:_____/19:00511322 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1145/3337787" target="_blank" >http://dx.doi.org/10.1145/3337787</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3337787" target="_blank" >10.1145/3337787</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Representations of monotone Boolean functions by linear programs

  • Popis výsledku v původním jazyce

    We introduce the notion of monotone linear programming circuits (MLP circuits), a model of computation for partial Boolean functions. Using this model, we prove the following results. (1) MLP circuits are superpolynomially stronger than monotone Boolean circuits. (2) MLP circuits are exponentially stronger than monotone span programs over the reals. (3) MLP circuits can be used to provide monotone feasibility interpolation theorems for Lovász-Schrijver proof systems and for mixed Lovász-Schrijver proof systems. (4) The Lovász-Schrijver proof system cannot be polynomially simulated by the cutting planes proof system. Finally, we establish connections between the problem of proving lower bounds for the size of MLP circuits and the field of extension complexity of polytopes.

  • Název v anglickém jazyce

    Representations of monotone Boolean functions by linear programs

  • Popis výsledku anglicky

    We introduce the notion of monotone linear programming circuits (MLP circuits), a model of computation for partial Boolean functions. Using this model, we prove the following results. (1) MLP circuits are superpolynomially stronger than monotone Boolean circuits. (2) MLP circuits are exponentially stronger than monotone span programs over the reals. (3) MLP circuits can be used to provide monotone feasibility interpolation theorems for Lovász-Schrijver proof systems and for mixed Lovász-Schrijver proof systems. (4) The Lovász-Schrijver proof system cannot be polynomially simulated by the cutting planes proof system. Finally, we establish connections between the problem of proving lower bounds for the size of MLP circuits and the field of extension complexity of polytopes.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACM Transactions on Computation Theory

  • ISSN

    1942-3454

  • e-ISSN

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    31

  • Strana od-do

    22

  • Kód UT WoS článku

    000496750000004

  • EID výsledku v databázi Scopus

    2-s2.0-85075615893