Beyond natural proofs: Hardness magnification and locality
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00523269" target="_blank" >RIV/67985840:_____/20:00523269 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4230/LIPIcs.ITCS.2020.70" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.ITCS.2020.70</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ITCS.2020.70" target="_blank" >10.4230/LIPIcs.ITCS.2020.70</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Beyond natural proofs: Hardness magnification and locality
Popis výsledku v původním jazyce
Hardness magnification reduces major complexity separations (such as EXP ⊈ NC^1) to proving lower bounds for some natural problem Q against weak circuit models. Several recent works [Igor Carboni Oliveira and Rahul Santhanam, 2018, Dylan M. McKay et al., 2019, Lijie Chen and Roei Tell, 2019, Igor Carboni Oliveira et al., 2019, Lijie Chen et al., 2019, Igor Carboni Oliveira, 2019, Lijie Chen et al., 2019] have established results of this form. In the most intriguing cases, the required lower bound is known for problems that appear to be significantly easier than Q, while Q itself is susceptible to lower bounds but these are not yet sufficient for magnification. In this work, we provide more examples of this phenomenon, and investigate the prospects of proving new lower bounds using this approach. In particular, we consider the following essential questions associated with the hardness magnification program: - Does hardness magnification avoid the natural proofs barrier of Razborov and Rudich [Alexander A. Razborov and Steven Rudich, 1997]? - Can we adapt known lower bound techniques to establish the desired lower bound for Q? We establish that some instantiations of hardness magnification overcome the natural proofs barrier in the following sense: slightly superlinear-size circuit lower bounds for certain versions of the minimum circuit size problem MCSP imply the non-existence of natural proofs. As a corollary of our result, we show that certain magnification theorems not only imply strong worst-case circuit lower bounds but also rule out the existence of efficient learning algorithms. Hardness magnification might sidestep natural proofs, but we identify a source of difficulty when trying to adapt existing lower bound techniques to prove strong lower bounds via magnification. This is captured by a locality barrier: existing magnification theorems unconditionally show that the problems Q considered above admit highly efficient circuits extended with small fan-in oracle gates, while lower bound techniques against weak circuit models quite often easily extend to circuits containing such oracles. This explains why direct adaptations of certain lower bounds are unlikely to yield strong complexity separations via hardness magnification.
Název v anglickém jazyce
Beyond natural proofs: Hardness magnification and locality
Popis výsledku anglicky
Hardness magnification reduces major complexity separations (such as EXP ⊈ NC^1) to proving lower bounds for some natural problem Q against weak circuit models. Several recent works [Igor Carboni Oliveira and Rahul Santhanam, 2018, Dylan M. McKay et al., 2019, Lijie Chen and Roei Tell, 2019, Igor Carboni Oliveira et al., 2019, Lijie Chen et al., 2019, Igor Carboni Oliveira, 2019, Lijie Chen et al., 2019] have established results of this form. In the most intriguing cases, the required lower bound is known for problems that appear to be significantly easier than Q, while Q itself is susceptible to lower bounds but these are not yet sufficient for magnification. In this work, we provide more examples of this phenomenon, and investigate the prospects of proving new lower bounds using this approach. In particular, we consider the following essential questions associated with the hardness magnification program: - Does hardness magnification avoid the natural proofs barrier of Razborov and Rudich [Alexander A. Razborov and Steven Rudich, 1997]? - Can we adapt known lower bound techniques to establish the desired lower bound for Q? We establish that some instantiations of hardness magnification overcome the natural proofs barrier in the following sense: slightly superlinear-size circuit lower bounds for certain versions of the minimum circuit size problem MCSP imply the non-existence of natural proofs. As a corollary of our result, we show that certain magnification theorems not only imply strong worst-case circuit lower bounds but also rule out the existence of efficient learning algorithms. Hardness magnification might sidestep natural proofs, but we identify a source of difficulty when trying to adapt existing lower bound techniques to prove strong lower bounds via magnification. This is captured by a locality barrier: existing magnification theorems unconditionally show that the problems Q considered above admit highly efficient circuits extended with small fan-in oracle gates, while lower bound techniques against weak circuit models quite often easily extend to circuits containing such oracles. This explains why direct adaptations of certain lower bounds are unlikely to yield strong complexity separations via hardness magnification.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-05497S" target="_blank" >GA19-05497S: Složitost matematických důkazů a struktur</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
11th Innovations in Theoretical Computer Science Conference (ITCS 2020)
ISBN
978-3-95977-134-4
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
48
Strana od-do
70
Název nakladatele
Schloss Dagstuhl, Leibniz-Zentrum für Informatik
Místo vydání
Dagstuhl
Místo konání akce
Seattle
Datum konání akce
12. 1. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—