Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Nisan-Wigderson generators in proof complexity: New lower bounds

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00559510" target="_blank" >RIV/67985840:_____/22:00559510 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://dx.doi.org/10.4230/LIPIcs.CCC.2022.17" target="_blank" >https://dx.doi.org/10.4230/LIPIcs.CCC.2022.17</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.CCC.2022.17" target="_blank" >10.4230/LIPIcs.CCC.2022.17</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Nisan-Wigderson generators in proof complexity: New lower bounds

  • Popis výsledku v původním jazyce

    A map g:{0,1}ⁿ → {0,1}^m (m > n) is a hard proof complexity generator for a proof system P iff for every string b ∈ {0,1}^m ⧵ Rng(g), formula τ_b(g) naturally expressing b ∉ Rng(g) requires superpolynomial size P-proofs. One of the well-studied maps in the theory of proof complexity generators is Nisan-Wigderson generator. Razborov [A. A. {Razborov}, 2015] conjectured that if A is a suitable matrix and f is a NP∩CoNP function hard-on-average for ????/poly, then NW_{f, A} is a hard proof complexity generator for Extended Frege. In this paper, we prove a form of Razborov’s conjecture for AC⁰-Frege. We show that for any symmetric NP∩CoNP function f that is exponentially hard for depth two AC⁰ circuits, NW_{f,A} is a hard proof complexity generator for AC⁰-Frege in a natural setting. As direct applications of this theorem, we show that:n1) For any f with the specified properties, τ_b(NW_{f,A}) (for a natural formalization) based on a random b and a random matrix A with probability 1-o(1) is a tautology and requires superpolynomial (or even exponential) AC⁰-Frege proofs.n2) Certain formalizations of the principle f_n ∉ (NP∩CoNP)/poly requires superpolynomial AC⁰-Frege proofs. These applications relate to two questions that were asked by Krajíček [J. {Krajíček}, 2019].

  • Název v anglickém jazyce

    Nisan-Wigderson generators in proof complexity: New lower bounds

  • Popis výsledku anglicky

    A map g:{0,1}ⁿ → {0,1}^m (m > n) is a hard proof complexity generator for a proof system P iff for every string b ∈ {0,1}^m ⧵ Rng(g), formula τ_b(g) naturally expressing b ∉ Rng(g) requires superpolynomial size P-proofs. One of the well-studied maps in the theory of proof complexity generators is Nisan-Wigderson generator. Razborov [A. A. {Razborov}, 2015] conjectured that if A is a suitable matrix and f is a NP∩CoNP function hard-on-average for ????/poly, then NW_{f, A} is a hard proof complexity generator for Extended Frege. In this paper, we prove a form of Razborov’s conjecture for AC⁰-Frege. We show that for any symmetric NP∩CoNP function f that is exponentially hard for depth two AC⁰ circuits, NW_{f,A} is a hard proof complexity generator for AC⁰-Frege in a natural setting. As direct applications of this theorem, we show that:n1) For any f with the specified properties, τ_b(NW_{f,A}) (for a natural formalization) based on a random b and a random matrix A with probability 1-o(1) is a tautology and requires superpolynomial (or even exponential) AC⁰-Frege proofs.n2) Certain formalizations of the principle f_n ∉ (NP∩CoNP)/poly requires superpolynomial AC⁰-Frege proofs. These applications relate to two questions that were asked by Krajíček [J. {Krajíček}, 2019].

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    37th Computational Complexity Conference (CCC 2022)

  • ISBN

    978-3-95977-241-9

  • ISSN

    1868-8969

  • e-ISSN

  • Počet stran výsledku

    15

  • Strana od-do

    1-15

  • Název nakladatele

    Schloss Dagstuhl, Leibniz-Zentrum für Informatik

  • Místo vydání

    Dagstuhl

  • Místo konání akce

    Philadelphia

  • Datum konání akce

    20. 7. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku