From proof complexity to circuit complexity via interactive protocols
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00588537" target="_blank" >RIV/67985840:_____/24:00588537 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.ICALP.2024.12" target="_blank" >https://doi.org/10.4230/LIPIcs.ICALP.2024.12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2024.12" target="_blank" >10.4230/LIPIcs.ICALP.2024.12</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
From proof complexity to circuit complexity via interactive protocols
Popis výsledku v původním jazyce
Folklore in complexity theory suspects that circuit lower bounds against NC1 or P/poly, currently out of reach, are a necessary step towards proving strong proof complexity lower bounds for systems like Frege or Extended Frege. Establishing such a connection formally, however, is already daunting, as it would imply the breakthrough separation NEXP ⊈ P/poly, as recently observed by Pich and Santhanam [58]. We show such a connection conditionally for the Implicit Extended Frege proof system (iEF) introduced by Krajíček [45], capable of formalizing most of contemporary complexity theory. In particular, we show that if iEF proves efficiently the standard derandomization assumption that a concrete Boolean function is hard on average for subexponential-size circuits, then any superpolynomial lower bound on the length of iEF proofs implies #P ⊈ FP/poly (which would in turn imply, for example, PSPACE ⊈ P/poly). Our proof exploits the formalization inside iEF of the soundness of the sum-check protocol of Lund, Fortnow, Karloff, and Nisan [54]. This has consequences for the self-provability of circuit upper bounds in iEF. Interestingly, further improving our result seems to require progress in constructing interactive proof systems with more efficient provers.
Název v anglickém jazyce
From proof complexity to circuit complexity via interactive protocols
Popis výsledku anglicky
Folklore in complexity theory suspects that circuit lower bounds against NC1 or P/poly, currently out of reach, are a necessary step towards proving strong proof complexity lower bounds for systems like Frege or Extended Frege. Establishing such a connection formally, however, is already daunting, as it would imply the breakthrough separation NEXP ⊈ P/poly, as recently observed by Pich and Santhanam [58]. We show such a connection conditionally for the Implicit Extended Frege proof system (iEF) introduced by Krajíček [45], capable of formalizing most of contemporary complexity theory. In particular, we show that if iEF proves efficiently the standard derandomization assumption that a concrete Boolean function is hard on average for subexponential-size circuits, then any superpolynomial lower bound on the length of iEF proofs implies #P ⊈ FP/poly (which would in turn imply, for example, PSPACE ⊈ P/poly). Our proof exploits the formalization inside iEF of the soundness of the sum-check protocol of Lund, Fortnow, Karloff, and Nisan [54]. This has consequences for the self-provability of circuit upper bounds in iEF. Interestingly, further improving our result seems to require progress in constructing interactive proof systems with more efficient provers.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)
ISBN
978-3-95977-322-5
ISSN
1868-8969
e-ISSN
1868-8969
Počet stran výsledku
20
Strana od-do
12
Název nakladatele
Schloss Dagstuhl, Leibniz-Zentrum für Informatik
Místo vydání
Dagstuhl
Místo konání akce
Tallin
Datum konání akce
8. 7. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—