Jump operators, interactive proofs and proof complexity generators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00604013" target="_blank" >RIV/67985840:_____/24:00604013 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/FOCS61266.2024.00044" target="_blank" >http://dx.doi.org/10.1109/FOCS61266.2024.00044</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/FOCS61266.2024.00044" target="_blank" >10.1109/FOCS61266.2024.00044</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Jump operators, interactive proofs and proof complexity generators
Popis výsledku v původním jazyce
A jump operator J in proof complexity is a function such that for any proof system P, J(P) is a proof system that P cannot simulate. Some candidate jump operators were proposed by Krajicek and Pudlak [63] and Krajicek [57], but it is an open problem whether computable jump operators exist or not. In this regard, we introduce a new candidate jump operator based on the power of interactive proofs which given a proof system P, [I P, P] (I P-randomized implicit proof system based on P) is an M A proof system. In the first step, we investigate the relationship between IP - randomized implicit proof systems and Cook-Reckhow proof systems. In particular, we show that if i EF (Krajicek's implicit Extended Frege) proves exponential hard on average circuit lower bounds efficiently, then i E F simulates [IP, EF]. Moreover, we show that IP-randomized implicit proof systems can be used to prove new connections between different well-studied concepts in complexity theory. Namely, we prove new results about the hardness magnification in proof complexity, the hardness of proving proof complexity lower bounds, the automatability and the feasible disjunction property for Extended Frege using IP - randomized implicit proof systems. One ingredient of our proofs is a formalization of the sum-check protocol [65] in S21 which might be of independent interest. We also look at the general theory of jump operators and consider an old conjecture by Pudlak [78] about finite consistency sentences for first-order theories of arithmetic. In this direction, we prove that certain statements are equivalent, in particular, we prove that the widely believed assumption about the existence of computable jump operators in proof complexity is equivalent to a weaker form of Pudlak's conjecture.
Název v anglickém jazyce
Jump operators, interactive proofs and proof complexity generators
Popis výsledku anglicky
A jump operator J in proof complexity is a function such that for any proof system P, J(P) is a proof system that P cannot simulate. Some candidate jump operators were proposed by Krajicek and Pudlak [63] and Krajicek [57], but it is an open problem whether computable jump operators exist or not. In this regard, we introduce a new candidate jump operator based on the power of interactive proofs which given a proof system P, [I P, P] (I P-randomized implicit proof system based on P) is an M A proof system. In the first step, we investigate the relationship between IP - randomized implicit proof systems and Cook-Reckhow proof systems. In particular, we show that if i EF (Krajicek's implicit Extended Frege) proves exponential hard on average circuit lower bounds efficiently, then i E F simulates [IP, EF]. Moreover, we show that IP-randomized implicit proof systems can be used to prove new connections between different well-studied concepts in complexity theory. Namely, we prove new results about the hardness magnification in proof complexity, the hardness of proving proof complexity lower bounds, the automatability and the feasible disjunction property for Extended Frege using IP - randomized implicit proof systems. One ingredient of our proofs is a formalization of the sum-check protocol [65] in S21 which might be of independent interest. We also look at the general theory of jump operators and consider an old conjecture by Pudlak [78] about finite consistency sentences for first-order theories of arithmetic. In this direction, we prove that certain statements are equivalent, in particular, we prove that the widely believed assumption about the existence of computable jump operators in proof complexity is equivalent to a weaker form of Pudlak's conjecture.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS)
ISBN
979-833151674-1
ISSN
0272-5428
e-ISSN
—
Počet stran výsledku
21
Strana od-do
573-593
Název nakladatele
IEEE
Místo vydání
Philadelphia
Místo konání akce
Chicago
Datum konání akce
27. 10. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001419526400035