Flat morphisms of finite presentation are very flat
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00524626" target="_blank" >RIV/67985840:_____/20:00524626 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10231-019-00905-1" target="_blank" >https://doi.org/10.1007/s10231-019-00905-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10231-019-00905-1" target="_blank" >10.1007/s10231-019-00905-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Flat morphisms of finite presentation are very flat
Popis výsledku v původním jazyce
Principal affine open subsets in affine schemes are an important tool in the foundations of algebraic geometry. Given a commutative ring R, R-modules built from the rings of functions on principal affine open subschemes in SpecR using ordinal-indexed filtrations and direct summands are called very flat. The related class of very flat quasi-coherent sheaves over a scheme is intermediate between the classes of locally free and flat sheaves, and has serious technical advantages over both. In this paper, we show that very flat modules and sheaves are ubiquitous in algebraic geometry: if S is a finitely presented commutative R-algebra which is flat as an R-module, then S is a very flat R-module. This proves a conjecture formulated in the February 2014 version of the first author’s long preprint on contraherent cosheaves (Positselski in Contraherent cosheaves, arXiv:1209.2995 [math.CT]). We also show that the (finite) very flatness property of a flat module satisfies descent with respect to commutative ring homomorphisms of finite presentation inducing surjective maps of the spectra.
Název v anglickém jazyce
Flat morphisms of finite presentation are very flat
Popis výsledku anglicky
Principal affine open subsets in affine schemes are an important tool in the foundations of algebraic geometry. Given a commutative ring R, R-modules built from the rings of functions on principal affine open subschemes in SpecR using ordinal-indexed filtrations and direct summands are called very flat. The related class of very flat quasi-coherent sheaves over a scheme is intermediate between the classes of locally free and flat sheaves, and has serious technical advantages over both. In this paper, we show that very flat modules and sheaves are ubiquitous in algebraic geometry: if S is a finitely presented commutative R-algebra which is flat as an R-module, then S is a very flat R-module. This proves a conjecture formulated in the February 2014 version of the first author’s long preprint on contraherent cosheaves (Positselski in Contraherent cosheaves, arXiv:1209.2995 [math.CT]). We also show that the (finite) very flatness property of a flat module satisfies descent with respect to commutative ring homomorphisms of finite presentation inducing surjective maps of the spectra.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annali di Matematica Pura ed Applicata
ISSN
0373-3114
e-ISSN
—
Svazek periodika
199
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
50
Strana od-do
875-924
Kód UT WoS článku
000535508400003
EID výsledku v databázi Scopus
2-s2.0-85074024917