Countably generated flat modules are quite flat
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00557869" target="_blank" >RIV/67985840:_____/22:00557869 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/22:10454755
Výsledek na webu
<a href="http://https:dx.doi.org/10.1216/jca.2022.14.37" target="_blank" >http://https:dx.doi.org/10.1216/jca.2022.14.37</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1216/jca.2022.14.37" target="_blank" >10.1216/jca.2022.14.37</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Countably generated flat modules are quite flat
Popis výsledku v původním jazyce
We prove that if R is a commutative Noetherian ring, then every countably generated flat R-module is quite flat, i.e., a direct summand of a transfinite extension of localizations of R in countable multiplicative subsets. We also show that if the spectrum of R is of cardinality less than kappa, where kappa is an uncountable regular cardinal, then every flat R-module is a transfinite extension of flat modules with less than kappa generators. This provides an alternative proof of the fact that over a commutative Noetherian ring with countable spectrum, all flat modules are quite flat. More generally, we say that a commutative ring is CFQ if every countably presented flat R-module is quite flat. We show that all von Neumann regular rings and all S-almost perfect rings are CFQ. A zero-dimensional local ring is CFQ if and only if it is perfect. A domain is CFQ if and only if all its proper quotient rings are CFQ. A valuation domain is CFQ if and only if it is strongly discrete.
Název v anglickém jazyce
Countably generated flat modules are quite flat
Popis výsledku anglicky
We prove that if R is a commutative Noetherian ring, then every countably generated flat R-module is quite flat, i.e., a direct summand of a transfinite extension of localizations of R in countable multiplicative subsets. We also show that if the spectrum of R is of cardinality less than kappa, where kappa is an uncountable regular cardinal, then every flat R-module is a transfinite extension of flat modules with less than kappa generators. This provides an alternative proof of the fact that over a commutative Noetherian ring with countable spectrum, all flat modules are quite flat. More generally, we say that a commutative ring is CFQ if every countably presented flat R-module is quite flat. We show that all von Neumann regular rings and all S-almost perfect rings are CFQ. A zero-dimensional local ring is CFQ if and only if it is perfect. A domain is CFQ if and only if all its proper quotient rings are CFQ. A valuation domain is CFQ if and only if it is strongly discrete.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-23112S" target="_blank" >GA17-23112S: Strukturní teorie reprezentací algeber (lokalizace a vychylující teorie)</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Commutative Algebra
ISSN
1939-0807
e-ISSN
1939-2346
Svazek periodika
14
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
37-54
Kód UT WoS článku
000808049400004
EID výsledku v databázi Scopus
2-s2.0-85131455805