Dissipative solutions and semiflow selection for the complete Euler system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00524628" target="_blank" >RIV/67985840:_____/20:00524628 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00220-019-03662-7" target="_blank" >https://doi.org/10.1007/s00220-019-03662-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00220-019-03662-7" target="_blank" >10.1007/s00220-019-03662-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dissipative solutions and semiflow selection for the complete Euler system
Popis výsledku v původním jazyce
To circumvent the ill-posedness issues present in various models of continuum fluid mechanics, we present a dynamical systems approach aiming at the selection of physically relevant solutions. Even under the presence of infinitely many solutions to the full Euler system describing the motion of a compressible inviscid fluid, our approach permits to select a system of solutions (one trajectory for every initial condition) satisfying the classical semiflow property. Moreover, the selection respects the well accepted admissibility criteria for physical solutions, namely, maximization of the entropy production rate and the weak–strong uniqueness principle. Consequently, strong solutions are always selected whenever they exist and stationary states are stable and included in the selection as well. To this end, we introduce a notion of dissipative solution, which is given by a triple of density, momentum and total entropy defined as expectations of a suitable measure-valued solution.
Název v anglickém jazyce
Dissipative solutions and semiflow selection for the complete Euler system
Popis výsledku anglicky
To circumvent the ill-posedness issues present in various models of continuum fluid mechanics, we present a dynamical systems approach aiming at the selection of physically relevant solutions. Even under the presence of infinitely many solutions to the full Euler system describing the motion of a compressible inviscid fluid, our approach permits to select a system of solutions (one trajectory for every initial condition) satisfying the classical semiflow property. Moreover, the selection respects the well accepted admissibility criteria for physical solutions, namely, maximization of the entropy production rate and the weak–strong uniqueness principle. Consequently, strong solutions are always selected whenever they exist and stationary states are stable and included in the selection as well. To this end, we introduce a notion of dissipative solution, which is given by a triple of density, momentum and total entropy defined as expectations of a suitable measure-valued solution.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-05974S" target="_blank" >GA18-05974S: Oscilace a koncentrace proti stabilitě v rovnicích pohybu tekutin</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Communications in Mathematical Physics
ISSN
0010-3616
e-ISSN
—
Svazek periodika
376
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
27
Strana od-do
1471-1497
Kód UT WoS článku
000536053300016
EID výsledku v databázi Scopus
2-s2.0-85078059145