Rules with parameters in modal logic II
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00524632" target="_blank" >RIV/67985840:_____/20:00524632 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.apal.2020.102829" target="_blank" >https://doi.org/10.1016/j.apal.2020.102829</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apal.2020.102829" target="_blank" >10.1016/j.apal.2020.102829</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rules with parameters in modal logic II
Popis výsledku v původním jazyce
We analyze the computational complexity of admissibility and unifiability with parameters in transitive modal logics. The class of cluster-extensible (clx) logics was introduced in the first part of this series of papers [8]. We completely classify the complexity of unifiability or inadmissibility in any clx logic as being complete for one of Σ2 exp, NEXP, coNEXP, PSPACE, or Π2 p. In addition to the main case where arbitrary parameters are allowed, we consider restricted problems with the number of parameters bounded by a constant, and the parameter-free case. Our upper bounds are specific to clx logics, but we also include similar results for logics of bounded depth and width. In contrast, our lower bounds are very general: they apply each to a class of all transitive logics whose frames allow occurrence of certain finite subframes. We also discuss the baseline problem of complexity of derivability: it is coNP-complete or PSPACE-complete for each clx logic. In particular, we prove PSPACE-hardness of derivability for a broad class of transitive logics that includes all logics with the disjunction property.
Název v anglickém jazyce
Rules with parameters in modal logic II
Popis výsledku anglicky
We analyze the computational complexity of admissibility and unifiability with parameters in transitive modal logics. The class of cluster-extensible (clx) logics was introduced in the first part of this series of papers [8]. We completely classify the complexity of unifiability or inadmissibility in any clx logic as being complete for one of Σ2 exp, NEXP, coNEXP, PSPACE, or Π2 p. In addition to the main case where arbitrary parameters are allowed, we consider restricted problems with the number of parameters bounded by a constant, and the parameter-free case. Our upper bounds are specific to clx logics, but we also include similar results for logics of bounded depth and width. In contrast, our lower bounds are very general: they apply each to a class of all transitive logics whose frames allow occurrence of certain finite subframes. We also discuss the baseline problem of complexity of derivability: it is coNP-complete or PSPACE-complete for each clx logic. In particular, we prove PSPACE-hardness of derivability for a broad class of transitive logics that includes all logics with the disjunction property.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-05497S" target="_blank" >GA19-05497S: Složitost matematických důkazů a struktur</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Pure and Applied Logic
ISSN
0168-0072
e-ISSN
—
Svazek periodika
171
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
59
Strana od-do
102829
Kód UT WoS článku
000568991900008
EID výsledku v databázi Scopus
2-s2.0-85084806006