Closed ideals of operators on the Tsirelson and Schreier spaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00525128" target="_blank" >RIV/67985840:_____/20:00525128 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.jfa.2020.108668" target="_blank" >https://doi.org/10.1016/j.jfa.2020.108668</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfa.2020.108668" target="_blank" >10.1016/j.jfa.2020.108668</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Closed ideals of operators on the Tsirelson and Schreier spaces
Popis výsledku v původním jazyce
Let B(X) denote the Banach algebra of bounded operators on X, where X is either Tsirelson's Banach space or the Schreier space of order n for some n∈N. We show that the lattice of closed ideals of B(X) has a very rich structure, in particular B(X) contains at least continuum many maximal ideals. Our approach is to study the closed ideals generated by the basis projections. Indeed, the unit vector basis is an unconditional basis for each of the above spaces, so there is a basis projection PN∈B(X) corresponding to each non-empty subset N of N. A closed ideal of B(X) is spatial if it is generated by PN for some N. We can now state our main conclusions as follows: • the family of spatial ideals lying strictly between the ideal of compact operators and B(X) is non-empty and has no minimal or maximal elements, • for each pair I⫋J of spatial ideals, there is a family {ΓL:L∈Δ}, where the index set Δ has the cardinality of the continuum, such that ΓL is an uncountable chain of spatial ideals, ⋃ΓL is a closed ideal that is not spatial, and I⫋L⫋JandL+M‾=J whenever L,M∈Δ are distinct and L∈ΓL, M∈ΓM.
Název v anglickém jazyce
Closed ideals of operators on the Tsirelson and Schreier spaces
Popis výsledku anglicky
Let B(X) denote the Banach algebra of bounded operators on X, where X is either Tsirelson's Banach space or the Schreier space of order n for some n∈N. We show that the lattice of closed ideals of B(X) has a very rich structure, in particular B(X) contains at least continuum many maximal ideals. Our approach is to study the closed ideals generated by the basis projections. Indeed, the unit vector basis is an unconditional basis for each of the above spaces, so there is a basis projection PN∈B(X) corresponding to each non-empty subset N of N. A closed ideal of B(X) is spatial if it is generated by PN for some N. We can now state our main conclusions as follows: • the family of spatial ideals lying strictly between the ideal of compact operators and B(X) is non-empty and has no minimal or maximal elements, • for each pair I⫋J of spatial ideals, there is a family {ΓL:L∈Δ}, where the index set Δ has the cardinality of the continuum, such that ΓL is an uncountable chain of spatial ideals, ⋃ΓL is a closed ideal that is not spatial, and I⫋L⫋JandL+M‾=J whenever L,M∈Δ are distinct and L∈ΓL, M∈ΓM.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-07129Y" target="_blank" >GJ19-07129Y: Metody lineární analýzy v operátorových algebrách a naopak</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Functional Analysis
ISSN
0022-1236
e-ISSN
—
Svazek periodika
279
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
28
Strana od-do
108668
Kód UT WoS článku
000560373600006
EID výsledku v databázi Scopus
2-s2.0-85086106962