Veronese powers of operads and pure homotopy algebras
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00532206" target="_blank" >RIV/67985840:_____/20:00532206 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s40879-019-00351-6" target="_blank" >https://doi.org/10.1007/s40879-019-00351-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40879-019-00351-6" target="_blank" >10.1007/s40879-019-00351-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Veronese powers of operads and pure homotopy algebras
Popis výsledku v původním jazyce
We define the mth Veronese power of a weight graded operad [InlineEquation not available: see fulltext.] to be its suboperad [InlineEquation not available: see fulltext.] generated by operations of weight m. It turns out that, unlike Veronese powers of associative algebras, homological properties of operads are, in general, not improved by this construction. However, under some technical conditions, Veronese powers of quadratic Koszul operads are meaningful in the context of the Koszul duality theory. Indeed, we show that in many important cases the operads [InlineEquation not available: see fulltext.] are related by Koszul duality to operads describing strongly homotopy algebras with only one nontrivial operation. Our theory has immediate applications to objects such as Lie k-algebras and Lie triple systems. In the case of Lie k-algebras, we also discuss a similarly looking ungraded construction which is frequently used in the literature. We establish that the corresponding operad does not possess good homotopy properties, and that it leads to a very simple example of a non-Koszul quadratic operad for which the Ginzburg–Kapranov power series test is inconclusive.
Název v anglickém jazyce
Veronese powers of operads and pure homotopy algebras
Popis výsledku anglicky
We define the mth Veronese power of a weight graded operad [InlineEquation not available: see fulltext.] to be its suboperad [InlineEquation not available: see fulltext.] generated by operations of weight m. It turns out that, unlike Veronese powers of associative algebras, homological properties of operads are, in general, not improved by this construction. However, under some technical conditions, Veronese powers of quadratic Koszul operads are meaningful in the context of the Koszul duality theory. Indeed, we show that in many important cases the operads [InlineEquation not available: see fulltext.] are related by Koszul duality to operads describing strongly homotopy algebras with only one nontrivial operation. Our theory has immediate applications to objects such as Lie k-algebras and Lie triple systems. In the case of Lie k-algebras, we also discuss a similarly looking ungraded construction which is frequently used in the literature. We establish that the corresponding operad does not possess good homotopy properties, and that it leads to a very simple example of a non-Koszul quadratic operad for which the Ginzburg–Kapranov power series test is inconclusive.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-07776S" target="_blank" >GA18-07776S: Vyšší struktury v algebře, geometrii a matematické fyzice</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Mathematics
ISSN
2199-675X
e-ISSN
—
Svazek periodika
6
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
35
Strana od-do
829-863
Kód UT WoS článku
000569218800010
EID výsledku v databázi Scopus
2-s2.0-85068906275