Guaranteed a posteriori error bounds for low-rank tensor approximate solutions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00541908" target="_blank" >RIV/67985840:_____/21:00541908 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1093/imanum/draa010" target="_blank" >https://doi.org/10.1093/imanum/draa010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/imanum/draa010" target="_blank" >10.1093/imanum/draa010</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Guaranteed a posteriori error bounds for low-rank tensor approximate solutions
Popis výsledku v původním jazyce
We propose a guaranteed and fully computable upper bound on the energy norm of the error in low-rank tensor train (TT) approximate solutions of (possibly) high-dimensional reaction–diffusion problems. The error bound is obtained from Euler–Lagrange equations for a complementary flux reconstruction problem, which are solved in the low-rank TT representation using the block alternating linear scheme. This bound is guaranteed to be above the energy norm of the total error, including the discretization error, the tensor approximation error and the error in the solver of linear algebraic equations, although quadrature errors, in general, can pollute its evaluation. Numerical examples with the Poisson equation and the Schrödinger equation with the Henon–Heiles potential in up to 40 dimensions are presented to illustrate the efficiency of this approach.
Název v anglickém jazyce
Guaranteed a posteriori error bounds for low-rank tensor approximate solutions
Popis výsledku anglicky
We propose a guaranteed and fully computable upper bound on the energy norm of the error in low-rank tensor train (TT) approximate solutions of (possibly) high-dimensional reaction–diffusion problems. The error bound is obtained from Euler–Lagrange equations for a complementary flux reconstruction problem, which are solved in the low-rank TT representation using the block alternating linear scheme. This bound is guaranteed to be above the energy norm of the total error, including the discretization error, the tensor approximation error and the error in the solver of linear algebraic equations, although quadrature errors, in general, can pollute its evaluation. Numerical examples with the Poisson equation and the Schrödinger equation with the Henon–Heiles potential in up to 40 dimensions are presented to illustrate the efficiency of this approach.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-01074S" target="_blank" >GA20-01074S: Adaptivní metody pro numerické řešení parciálních diferenciálních rovnic: analýza, odhady chyb a iterativní řešiče</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IMA Journal of Numerical Analysis
ISSN
0272-4979
e-ISSN
1464-3642
Svazek periodika
41
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
27
Strana od-do
1240-1266
Kód UT WoS článku
000651815700014
EID výsledku v databázi Scopus
2-s2.0-85116905135