Multivariate data fitting using polyharmonic splines
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00543150" target="_blank" >RIV/67985840:_____/21:00543150 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.cam.2021.113651" target="_blank" >https://doi.org/10.1016/j.cam.2021.113651</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2021.113651" target="_blank" >10.1016/j.cam.2021.113651</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multivariate data fitting using polyharmonic splines
Popis výsledku v původním jazyce
The paper is concerned with the use of polyharmonic splines as basis functions in multivariate data fitting. We present several properties of polyharmonic splines and their mutual links: they are commonly used radial basis functions, they are basis functions resulting from the application of a particular smooth approximation procedure, and the form and coefficients of the approximant can be obtained as a solution of a boundary value differential problem for the polyharmonic equation. The construction of the approximant is based on the least squares approach. Approximation of the kind mentioned is often used in practical computation especially with the data measured in 2D and 3D for geographic information systems or computer aided geometric design. The smooth approximation point of view provides the best description of the properties of polyharmonic splines employed for approximation. We mention the connections to interpolation where appropriate.
Název v anglickém jazyce
Multivariate data fitting using polyharmonic splines
Popis výsledku anglicky
The paper is concerned with the use of polyharmonic splines as basis functions in multivariate data fitting. We present several properties of polyharmonic splines and their mutual links: they are commonly used radial basis functions, they are basis functions resulting from the application of a particular smooth approximation procedure, and the form and coefficients of the approximant can be obtained as a solution of a boundary value differential problem for the polyharmonic equation. The construction of the approximant is based on the least squares approach. Approximation of the kind mentioned is often used in practical computation especially with the data measured in 2D and 3D for geographic information systems or computer aided geometric design. The smooth approximation point of view provides the best description of the properties of polyharmonic splines employed for approximation. We mention the connections to interpolation where appropriate.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-09628S" target="_blank" >GA18-09628S: Pokročilá analýza proudových polí</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computational and Applied Mathematics
ISSN
0377-0427
e-ISSN
1879-1778
Svazek periodika
397
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
113651
Kód UT WoS článku
000661869500001
EID výsledku v databázi Scopus
2-s2.0-85107069185