Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multivariate data fitting using polyharmonic splines

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00543150" target="_blank" >RIV/67985840:_____/21:00543150 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.cam.2021.113651" target="_blank" >https://doi.org/10.1016/j.cam.2021.113651</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cam.2021.113651" target="_blank" >10.1016/j.cam.2021.113651</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multivariate data fitting using polyharmonic splines

  • Popis výsledku v původním jazyce

    The paper is concerned with the use of polyharmonic splines as basis functions in multivariate data fitting. We present several properties of polyharmonic splines and their mutual links: they are commonly used radial basis functions, they are basis functions resulting from the application of a particular smooth approximation procedure, and the form and coefficients of the approximant can be obtained as a solution of a boundary value differential problem for the polyharmonic equation. The construction of the approximant is based on the least squares approach. Approximation of the kind mentioned is often used in practical computation especially with the data measured in 2D and 3D for geographic information systems or computer aided geometric design. The smooth approximation point of view provides the best description of the properties of polyharmonic splines employed for approximation. We mention the connections to interpolation where appropriate.

  • Název v anglickém jazyce

    Multivariate data fitting using polyharmonic splines

  • Popis výsledku anglicky

    The paper is concerned with the use of polyharmonic splines as basis functions in multivariate data fitting. We present several properties of polyharmonic splines and their mutual links: they are commonly used radial basis functions, they are basis functions resulting from the application of a particular smooth approximation procedure, and the form and coefficients of the approximant can be obtained as a solution of a boundary value differential problem for the polyharmonic equation. The construction of the approximant is based on the least squares approach. Approximation of the kind mentioned is often used in practical computation especially with the data measured in 2D and 3D for geographic information systems or computer aided geometric design. The smooth approximation point of view provides the best description of the properties of polyharmonic splines employed for approximation. We mention the connections to interpolation where appropriate.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-09628S" target="_blank" >GA18-09628S: Pokročilá analýza proudových polí</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Computational and Applied Mathematics

  • ISSN

    0377-0427

  • e-ISSN

    1879-1778

  • Svazek periodika

    397

  • Číslo periodika v rámci svazku

    December

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    11

  • Strana od-do

    113651

  • Kód UT WoS článku

    000661869500001

  • EID výsledku v databázi Scopus

    2-s2.0-85107069185