Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Polyharmonic splines generated by multivariate smooth interpolation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00509204" target="_blank" >RIV/67985840:_____/19:00509204 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.camwa.2019.04.018" target="_blank" >http://dx.doi.org/10.1016/j.camwa.2019.04.018</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.camwa.2019.04.018" target="_blank" >10.1016/j.camwa.2019.04.018</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Polyharmonic splines generated by multivariate smooth interpolation

  • Popis výsledku v původním jazyce

    Polyharmonic splines of order m satisfy the polyharmonic equation of order m in n variables. Moreover, if employed as basis functions for interpolation they are radial functions. We are concerned with the problem of construction of the smooth interpolation formula presented as the minimizer of suitable functionals subject to interpolation constraints for n≥1. This is the principal motivation of the paper. We show a particular procedure for determining the interpolation formula that in a natural way leads to a linear combination of polyharmonic splines of a fixed order, possibly complemented with lower order polynomial terms. If it is advantageous for the interpolant in the problem solved to be a polyharmonic spline we can construct such an interpolant directly using the multivariate smooth approximation technique. The smoothness of the spline can be a priori chosen. Smooth interpolation can be very useful e.g. in signal processing, computer aided geometric design or construction of geographic information systems. A 1D computational example is presented.

  • Název v anglickém jazyce

    Polyharmonic splines generated by multivariate smooth interpolation

  • Popis výsledku anglicky

    Polyharmonic splines of order m satisfy the polyharmonic equation of order m in n variables. Moreover, if employed as basis functions for interpolation they are radial functions. We are concerned with the problem of construction of the smooth interpolation formula presented as the minimizer of suitable functionals subject to interpolation constraints for n≥1. This is the principal motivation of the paper. We show a particular procedure for determining the interpolation formula that in a natural way leads to a linear combination of polyharmonic splines of a fixed order, possibly complemented with lower order polynomial terms. If it is advantageous for the interpolant in the problem solved to be a polyharmonic spline we can construct such an interpolant directly using the multivariate smooth approximation technique. The smoothness of the spline can be a priori chosen. Smooth interpolation can be very useful e.g. in signal processing, computer aided geometric design or construction of geographic information systems. A 1D computational example is presented.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-09628S" target="_blank" >GA18-09628S: Pokročilá analýza proudových polí</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computers & Mathematics With Applications

  • ISSN

    0898-1221

  • e-ISSN

  • Svazek periodika

    78

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    10

  • Strana od-do

    3067-3076

  • Kód UT WoS článku

    000491624900015

  • EID výsledku v databázi Scopus

    2-s2.0-85065032844