Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Formally integrable complex structures on higher dimensional knot spaces

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00544043" target="_blank" >RIV/67985840:_____/21:00544043 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://dx.doi.org/10.4310/JSG.2021.v19.n3.a1" target="_blank" >https://dx.doi.org/10.4310/JSG.2021.v19.n3.a1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4310/JSG.2021.v19.n3.a1" target="_blank" >10.4310/JSG.2021.v19.n3.a1</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Formally integrable complex structures on higher dimensional knot spaces

  • Popis výsledku v původním jazyce

    Let S be a compact oriented finite dimensional manifold and M a finite dimensional Riemannian manifold, let Immf(S,M) the space of all free immersions φ:S→M and let B+i,f(S,M) the quotient space Immf(S,M)/Diff+(S), where Diff+(S) denotes the group of orientation preserving diffeomorphisms of S. In this paper we prove that if M admits a parallel r-fold vector cross product χ∈Ωr(M,TM) and dimS=r−1 then B+i,f(S,M) is a formally Kähler manifold. This generalizes Brylinski’s, LeBrun’s and Verbitsky’s results for the case that S is a codimension 2 submanifold in M, and S=S1 or M is a torsion-free G2-manifold respectively.

  • Název v anglickém jazyce

    Formally integrable complex structures on higher dimensional knot spaces

  • Popis výsledku anglicky

    Let S be a compact oriented finite dimensional manifold and M a finite dimensional Riemannian manifold, let Immf(S,M) the space of all free immersions φ:S→M and let B+i,f(S,M) the quotient space Immf(S,M)/Diff+(S), where Diff+(S) denotes the group of orientation preserving diffeomorphisms of S. In this paper we prove that if M admits a parallel r-fold vector cross product χ∈Ωr(M,TM) and dimS=r−1 then B+i,f(S,M) is a formally Kähler manifold. This generalizes Brylinski’s, LeBrun’s and Verbitsky’s results for the case that S is a codimension 2 submanifold in M, and S=S1 or M is a torsion-free G2-manifold respectively.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-00496S" target="_blank" >GA18-00496S: Singulární prostory ze speciální holonomie a foliací</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Symplectic Geometry

  • ISSN

    1527-5256

  • e-ISSN

    1540-2347

  • Svazek periodika

    19

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    23

  • Strana od-do

    507-529

  • Kód UT WoS článku

    000677432200001

  • EID výsledku v databázi Scopus

    2-s2.0-85112686577