Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Maximal non-compactness of Sobolev embeddings

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00544893" target="_blank" >RIV/67985840:_____/21:00544893 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11320/21:10441254

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s12220-020-00522-y" target="_blank" >https://doi.org/10.1007/s12220-020-00522-y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s12220-020-00522-y" target="_blank" >10.1007/s12220-020-00522-y</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Maximal non-compactness of Sobolev embeddings

  • Popis výsledku v původním jazyce

    It has been known that sharp Sobolev embeddings into weak Lebesgue spaces are non-compact but the question of whether the measure of non-compactness of such an embedding equals to its operator norm constituted a well-known open problem. The existing theory suggested an argument that would possibly solve the problem should the target norms be disjointly superadditive, but the question of disjoint superadditivity of spaces Lp,∞ has been open, too. In this paper, we solve both these problems. We first show that weak Lebesgue spaces are never disjointly superadditive, so the suggested technique is ruled out. But then we show that, perhaps somewhat surprisingly, the measure of non-compactness of a sharp Sobolev embedding coincides with the embedding norm nevertheless, at least as long as p< ∞. Finally, we show that if the target space is L∞ (which formally is also a weak Lebesgue space with p= ∞), then the things are essentially different. To give a comprehensive answer including this case, too, we develop a new method based on a rather unexpected combinatorial argument and prove thereby a general principle, whose special case implies that the measure of non-compactness, in this case, is strictly less than its norm. We develop a technique that enables us to evaluate this measure of non-compactness exactly.

  • Název v anglickém jazyce

    Maximal non-compactness of Sobolev embeddings

  • Popis výsledku anglicky

    It has been known that sharp Sobolev embeddings into weak Lebesgue spaces are non-compact but the question of whether the measure of non-compactness of such an embedding equals to its operator norm constituted a well-known open problem. The existing theory suggested an argument that would possibly solve the problem should the target norms be disjointly superadditive, but the question of disjoint superadditivity of spaces Lp,∞ has been open, too. In this paper, we solve both these problems. We first show that weak Lebesgue spaces are never disjointly superadditive, so the suggested technique is ruled out. But then we show that, perhaps somewhat surprisingly, the measure of non-compactness of a sharp Sobolev embedding coincides with the embedding norm nevertheless, at least as long as p< ∞. Finally, we show that if the target space is L∞ (which formally is also a weak Lebesgue space with p= ∞), then the things are essentially different. To give a comprehensive answer including this case, too, we develop a new method based on a rather unexpected combinatorial argument and prove thereby a general principle, whose special case implies that the measure of non-compactness, in this case, is strictly less than its norm. We develop a technique that enables us to evaluate this measure of non-compactness exactly.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-00580S" target="_blank" >GA18-00580S: Prostory funkcí a aproximace</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Geometric Analysis

  • ISSN

    1050-6926

  • e-ISSN

    1559-002X

  • Svazek periodika

    31

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    26

  • Strana od-do

    9406-9431

  • Kód UT WoS článku

    000577070400001

  • EID výsledku v databázi Scopus

    2-s2.0-85092492549