Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Lipschitz free spaces isomorphic to their infinite sums and geometric applications

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00546797" target="_blank" >RIV/67985840:_____/21:00546797 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11320/21:10441229

  • Výsledek na webu

    <a href="https://doi.org/10.1090/tran/8444" target="_blank" >https://doi.org/10.1090/tran/8444</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/tran/8444" target="_blank" >10.1090/tran/8444</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Lipschitz free spaces isomorphic to their infinite sums and geometric applications

  • Popis výsledku v původním jazyce

    We find general conditions under which Lipschitz-free spaces over metric spaces are isomorphic to their infinite direct _1-sum and exhibit several applications. As examples of such applications we have that Lipschitz-free spaces over balls and spheres of the same finite dimensions are isomorphic, that the Lipschitz-free space over Zd is isomorphic to its _1-sum, or that the Lipschitz-free space over any snowflake of a doubling metric space is isomorphic to l1. Moreover, following new ideas of Bruè et al. from [J. Funct. Anal. 280 (2021), pp. 108868, 21] we provide an elementary self-contained proof that Lipschitz-free spaces over doubling metric spaces are complemented in Lipschitz-free spaces over their superspaces and they have BAP. Everything, including the results about doubling metric spaces, is explored in the more comprehensive setting of p-Banach spaces, which allows us to appreciate the similarities and differences of the theory between the cases p < 1 and p = 1.

  • Název v anglickém jazyce

    Lipschitz free spaces isomorphic to their infinite sums and geometric applications

  • Popis výsledku anglicky

    We find general conditions under which Lipschitz-free spaces over metric spaces are isomorphic to their infinite direct _1-sum and exhibit several applications. As examples of such applications we have that Lipschitz-free spaces over balls and spheres of the same finite dimensions are isomorphic, that the Lipschitz-free space over Zd is isomorphic to its _1-sum, or that the Lipschitz-free space over any snowflake of a doubling metric space is isomorphic to l1. Moreover, following new ideas of Bruè et al. from [J. Funct. Anal. 280 (2021), pp. 108868, 21] we provide an elementary self-contained proof that Lipschitz-free spaces over doubling metric spaces are complemented in Lipschitz-free spaces over their superspaces and they have BAP. Everything, including the results about doubling metric spaces, is explored in the more comprehensive setting of p-Banach spaces, which allows us to appreciate the similarities and differences of the theory between the cases p < 1 and p = 1.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ19-05271Y" target="_blank" >GJ19-05271Y: Grupy a jejich akce, operátorové algebry a deskriptivní teorie množin</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    American Mathematical Society. Transactions

  • ISSN

    0002-9947

  • e-ISSN

    1088-6850

  • Svazek periodika

    374

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    32

  • Strana od-do

    7281-7312

  • Kód UT WoS článku

    000699713900017

  • EID výsledku v databázi Scopus

    2-s2.0-85110910225