Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A separator theorem for hypergraphs and a CSP-SAT algorithm

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00551098" target="_blank" >RIV/67985840:_____/21:00551098 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11320/21:10438303

  • Výsledek na webu

    <a href="https://doi.org/10.46298/lmcs-17(4:17)2021" target="_blank" >https://doi.org/10.46298/lmcs-17(4:17)2021</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.46298/lmcs-17(4:17)2021" target="_blank" >10.46298/lmcs-17(4:17)2021</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A separator theorem for hypergraphs and a CSP-SAT algorithm

  • Popis výsledku v původním jazyce

    We show that for every r≥2 there exists ϵr>0 such that any r-uniform hypergraph with m edges and maximum vertex degree o(m−−√) contains a set of at most (12−ϵr)m edges the removal of which breaks the hypergraph into connected components with at most m/2 edges. We use this to give an algorithm running in time d(1−ϵr)m that decides satisfiability of m-variable (d,k)-CSPs in which every variable appears in at most r constraints, where ϵr depends only on r and k∈o(m−−√). Furthermore our algorithm solves the corresponding #CSP-SAT and Max-CSP-SAT of these CSPs. We also show that CNF representations of unsatisfiable (2,k)-CSPs with variable frequency r can be refuted in tree-like resolution in size 2(1−ϵr)m. Furthermore for Tseitin formulas on graphs with degree at most k (which are (2,k)-CSPs) we give a deterministic algorithm finding such a refutation.

  • Název v anglickém jazyce

    A separator theorem for hypergraphs and a CSP-SAT algorithm

  • Popis výsledku anglicky

    We show that for every r≥2 there exists ϵr>0 such that any r-uniform hypergraph with m edges and maximum vertex degree o(m−−√) contains a set of at most (12−ϵr)m edges the removal of which breaks the hypergraph into connected components with at most m/2 edges. We use this to give an algorithm running in time d(1−ϵr)m that decides satisfiability of m-variable (d,k)-CSPs in which every variable appears in at most r constraints, where ϵr depends only on r and k∈o(m−−√). Furthermore our algorithm solves the corresponding #CSP-SAT and Max-CSP-SAT of these CSPs. We also show that CNF representations of unsatisfiable (2,k)-CSPs with variable frequency r can be refuted in tree-like resolution in size 2(1−ϵr)m. Furthermore for Tseitin formulas on graphs with degree at most k (which are (2,k)-CSPs) we give a deterministic algorithm finding such a refutation.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Logical Methods in Computer Science

  • ISSN

    1860-5974

  • e-ISSN

    1860-5974

  • Svazek periodika

    17

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    14

  • Strana od-do

    17

  • Kód UT WoS článku

    000744066500008

  • EID výsledku v databázi Scopus

    2-s2.0-85123311375