A variant of the VC-dimension with applications to depth-3 circuits
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00553336" target="_blank" >RIV/67985840:_____/22:00553336 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4230/LIPIcs.ITCS.2022.72" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.ITCS.2022.72</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ITCS.2022.72" target="_blank" >10.4230/LIPIcs.ITCS.2022.72</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A variant of the VC-dimension with applications to depth-3 circuits
Popis výsledku v původním jazyce
We introduce the following variant of the VC-dimension. Given S ⊆ {0,1}ⁿ and a positive integer d, we define ????_d(S) to be the size of the largest subset I ⊆ [n] such that the projection of S on every subset of I of size d is the d-dimensional cube. We show that determining the largest cardinality of a set with a given ????_d dimension is equivalent to a Turán-type problem related to the total number of cliques in a d-uniform hypergraph. This allows us to beat the Sauer-Shelah lemma for this notion of dimension. We use this to obtain several results on Σ₃^k-circuits, i.e., depth-3 circuits with top gate OR and bottom fan-in at most k:n- Tight relationship between the number of satisfying assignments of a 2-CNF and the dimension of the largest projection accepted by it, thus improving Paturi, Saks, and Zane (Comput. Complex. '00).n- Improved Σ₃³-circuit lower bounds for affine dispersers for sublinear dimension. Moreover, we pose a purely hypergraph-theoretic conjecture under which we get further improvement.n- We make progress towards settling the Σ₃² complexity of the inner product function and all degree-2 polynomials over ????₂ in general. The question of determining the Σ₃³ complexity of IP was recently posed by Golovnev, Kulikov, and Williams (ITCS'21).
Název v anglickém jazyce
A variant of the VC-dimension with applications to depth-3 circuits
Popis výsledku anglicky
We introduce the following variant of the VC-dimension. Given S ⊆ {0,1}ⁿ and a positive integer d, we define ????_d(S) to be the size of the largest subset I ⊆ [n] such that the projection of S on every subset of I of size d is the d-dimensional cube. We show that determining the largest cardinality of a set with a given ????_d dimension is equivalent to a Turán-type problem related to the total number of cliques in a d-uniform hypergraph. This allows us to beat the Sauer-Shelah lemma for this notion of dimension. We use this to obtain several results on Σ₃^k-circuits, i.e., depth-3 circuits with top gate OR and bottom fan-in at most k:n- Tight relationship between the number of satisfying assignments of a 2-CNF and the dimension of the largest projection accepted by it, thus improving Paturi, Saks, and Zane (Comput. Complex. '00).n- Improved Σ₃³-circuit lower bounds for affine dispersers for sublinear dimension. Moreover, we pose a purely hypergraph-theoretic conjecture under which we get further improvement.n- We make progress towards settling the Σ₃² complexity of the inner product function and all degree-2 polynomials over ????₂ in general. The question of determining the Σ₃³ complexity of IP was recently posed by Golovnev, Kulikov, and Williams (ITCS'21).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
13th Innovations in Theoretical Computer Science Conference (ITCS 2022)
ISBN
978-3-95977-217-4
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
19
Strana od-do
72
Název nakladatele
Schloss Dagstuhl, Leibniz-Zentrum für Informatik
Místo vydání
Dagstuhl
Místo konání akce
Berkeley
Datum konání akce
31. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—