The non-positive circuit weight problem in parametric graphs: A solution based on dioid theory
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00556580" target="_blank" >RIV/67985840:_____/22:00556580 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.dam.2022.03.008" target="_blank" >https://doi.org/10.1016/j.dam.2022.03.008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dam.2022.03.008" target="_blank" >10.1016/j.dam.2022.03.008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The non-positive circuit weight problem in parametric graphs: A solution based on dioid theory
Popis výsledku v původním jazyce
We consider a parametric weighted directed graph in which every $arc (j, i)$ has weight of the form $w((j, i)) = max(P_{ij}+lambda, I{ij}-lambda,C_{ij} )$, where $lambda$ is a real parameter, and P, I and C are arbitrary square matrices with elements in $mathbb{R} cap { -infty}$. An algorithm is proposed that solves the Non-positive Circuit weight Problem (NCP) on this class of parametric graphs, which consists in fi nding all values of $lambda$ such that the graph does not contain circuits with positive weight. This problem, which generalizes other instances of the NCP previously investigated in the literature, has applications in the consistency analysis of a class of discrete-event systems called P-time event graphs. The proposed algorithm is based on max-plus algebra and formal languages, and improves the worst-case complexity of other existing approaches, achieving strongly polynomial time complexity $O(n^4)$ (where n is the number of nodes in the graph).
Název v anglickém jazyce
The non-positive circuit weight problem in parametric graphs: A solution based on dioid theory
Popis výsledku anglicky
We consider a parametric weighted directed graph in which every $arc (j, i)$ has weight of the form $w((j, i)) = max(P_{ij}+lambda, I{ij}-lambda,C_{ij} )$, where $lambda$ is a real parameter, and P, I and C are arbitrary square matrices with elements in $mathbb{R} cap { -infty}$. An algorithm is proposed that solves the Non-positive Circuit weight Problem (NCP) on this class of parametric graphs, which consists in fi nding all values of $lambda$ such that the graph does not contain circuits with positive weight. This problem, which generalizes other instances of the NCP previously investigated in the literature, has applications in the consistency analysis of a class of discrete-event systems called P-time event graphs. The proposed algorithm is based on max-plus algebra and formal languages, and improves the worst-case complexity of other existing approaches, achieving strongly polynomial time complexity $O(n^4)$ (where n is the number of nodes in the graph).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Applied Mathematics
ISSN
0166-218X
e-ISSN
1872-6771
Svazek periodika
315
Číslo periodika v rámci svazku
July 15
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
56-70
Kód UT WoS článku
000911474000001
EID výsledku v databázi Scopus
2-s2.0-85127340713