Homotopy theory of algebras of substitudes and their localisation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00556688" target="_blank" >RIV/67985840:_____/22:00556688 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1090/tran/8600" target="_blank" >https://doi.org/10.1090/tran/8600</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/tran/8600" target="_blank" >10.1090/tran/8600</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Homotopy theory of algebras of substitudes and their localisation
Popis výsledku v původním jazyce
We study the category of algebras of substitudes (also known to be equivalent to the regular patterns of Getzler and operads coloured by a category) equipped with a (semi)model structure lifted from the model structure on the underlying presheaves. We are especially interested in the case when the model structure on presheaves is a Cisinski style localisation with respect to a proper Grothendieck fundamental localiser. For example, for the minimal fundamental localiser, the local objects in such a localisation are locally constant presheaves, and local algebras of substitudes are exactly algebras whose underlying presheaves are locally constant.nWe investigate when this localisation has nice properties. We single out a class of such substitudes which we call left localisable and show that the substitudes for -operads, symmetric, and braided operads are in this class. As an application we develop a homotopy theory of higher braided operads and prove a stabilisation theorem for their -localisations. This theorem implies, in particular, a generalisation of the Baez-Dolan stabilisation hypothesis for higher categories.
Název v anglickém jazyce
Homotopy theory of algebras of substitudes and their localisation
Popis výsledku anglicky
We study the category of algebras of substitudes (also known to be equivalent to the regular patterns of Getzler and operads coloured by a category) equipped with a (semi)model structure lifted from the model structure on the underlying presheaves. We are especially interested in the case when the model structure on presheaves is a Cisinski style localisation with respect to a proper Grothendieck fundamental localiser. For example, for the minimal fundamental localiser, the local objects in such a localisation are locally constant presheaves, and local algebras of substitudes are exactly algebras whose underlying presheaves are locally constant.nWe investigate when this localisation has nice properties. We single out a class of such substitudes which we call left localisable and show that the substitudes for -operads, symmetric, and braided operads are in this class. As an application we develop a homotopy theory of higher braided operads and prove a stabilisation theorem for their -localisations. This theorem implies, in particular, a generalisation of the Baez-Dolan stabilisation hypothesis for higher categories.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
American Mathematical Society. Transactions
ISSN
0002-9947
e-ISSN
1088-6850
Svazek periodika
375
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
72
Strana od-do
3569-3640
Kód UT WoS článku
000807482000016
EID výsledku v databázi Scopus
2-s2.0-85127956772