Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Error estimates of the Godunov method for the multidimensional compressible Euler system

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00557842" target="_blank" >RIV/67985840:_____/22:00557842 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s10915-022-01843-6" target="_blank" >https://doi.org/10.1007/s10915-022-01843-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10915-022-01843-6" target="_blank" >10.1007/s10915-022-01843-6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Error estimates of the Godunov method for the multidimensional compressible Euler system

  • Popis výsledku v původním jazyce

    We derive a priori error estimates of the Godunov method for the multidimensional compressible Euler system of gas dynamics. To this end we apply the relative energy principle and estimate the distance between the numerical solution and the strong solution. This yields also the estimates of the L2-norms of the errors in density, momentum and entropy. Under the assumption, that the numerical density is uniformly bounded from below by a positive constant and that the energy is uniformly bounded from above and stays positive, we obtain a convergence rate of 1/2 for the relative energy in the L1-norm, that is to say, a convergence rate of 1/4 for the L2-error of the numerical solution. Further, under the assumption—the total variation of the numerical solution is uniformly bounded, we obtain the first order convergence rate for the relative energy in the L1-norm, consequently, the numerical solution converges in the L2-norm with the convergence rate of 1/2. The numerical results presented are consistent with our theoretical analysis.

  • Název v anglickém jazyce

    Error estimates of the Godunov method for the multidimensional compressible Euler system

  • Popis výsledku anglicky

    We derive a priori error estimates of the Godunov method for the multidimensional compressible Euler system of gas dynamics. To this end we apply the relative energy principle and estimate the distance between the numerical solution and the strong solution. This yields also the estimates of the L2-norms of the errors in density, momentum and entropy. Under the assumption, that the numerical density is uniformly bounded from below by a positive constant and that the energy is uniformly bounded from above and stays positive, we obtain a convergence rate of 1/2 for the relative energy in the L1-norm, that is to say, a convergence rate of 1/4 for the L2-error of the numerical solution. Further, under the assumption—the total variation of the numerical solution is uniformly bounded, we obtain the first order convergence rate for the relative energy in the L1-norm, consequently, the numerical solution converges in the L2-norm with the convergence rate of 1/2. The numerical results presented are consistent with our theoretical analysis.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-02411S" target="_blank" >GA21-02411S: Řešení nekorektních úloh pohybu stlačitelných tekutin</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Scientific Computing

  • ISSN

    0885-7474

  • e-ISSN

    1573-7691

  • Svazek periodika

    91

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    27

  • Strana od-do

    71

  • Kód UT WoS článku

    000787294100001

  • EID výsledku v databázi Scopus

    2-s2.0-85128890283