Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Existence of a weak solution to a nonlinear fluid-structure interaction problem with heat exchange

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00559954" target="_blank" >RIV/67985840:_____/22:00559954 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1080/03605302.2022.2068425" target="_blank" >https://doi.org/10.1080/03605302.2022.2068425</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/03605302.2022.2068425" target="_blank" >10.1080/03605302.2022.2068425</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Existence of a weak solution to a nonlinear fluid-structure interaction problem with heat exchange

  • Popis výsledku v původním jazyce

    In this paper, we study a nonlinear interaction problem between a thermoelastic shell and a heat-conducting fluid. The shell is governed by linear thermoelasticity equations and encompasses a time-dependent domain which is filled with a fluid governed by the full Navier-Stokes-Fourier system. The fluid and the shell are fully coupled, giving rise to a novel nonlinear moving boundary fluid-structure interaction problem involving heat exchange. The existence of a weak solution is obtained by combining three approximation techniques–decoupling, penalization and domain extension. In particular, the penalization and the domain extension allow us to use the methods already developed for compressible fluids on moving domains. In such a way, the proof is more elegant and the analysis is drastically simplified. Let us stress that this is the first time the heat exchange in the context of fluid-structure interaction problems is considered.

  • Název v anglickém jazyce

    Existence of a weak solution to a nonlinear fluid-structure interaction problem with heat exchange

  • Popis výsledku anglicky

    In this paper, we study a nonlinear interaction problem between a thermoelastic shell and a heat-conducting fluid. The shell is governed by linear thermoelasticity equations and encompasses a time-dependent domain which is filled with a fluid governed by the full Navier-Stokes-Fourier system. The fluid and the shell are fully coupled, giving rise to a novel nonlinear moving boundary fluid-structure interaction problem involving heat exchange. The existence of a weak solution is obtained by combining three approximation techniques–decoupling, penalization and domain extension. In particular, the penalization and the domain extension allow us to use the methods already developed for compressible fluids on moving domains. In such a way, the proof is more elegant and the analysis is drastically simplified. Let us stress that this is the first time the heat exchange in the context of fluid-structure interaction problems is considered.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-04243S" target="_blank" >GA19-04243S: Parciální diferenciální rovnice v mechanice a termodynamice tekutin</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Communications in Partial Differential Equations

  • ISSN

    0360-5302

  • e-ISSN

    1532-4133

  • Svazek periodika

    47

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    45

  • Strana od-do

    1591-1635

  • Kód UT WoS článku

    000792721100001

  • EID výsledku v databázi Scopus

    2-s2.0-85130108373