When is a locally convex space Eberlein-Grothendieck?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00563646" target="_blank" >RIV/67985840:_____/22:00563646 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00025-022-01770-w" target="_blank" >https://doi.org/10.1007/s00025-022-01770-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00025-022-01770-w" target="_blank" >10.1007/s00025-022-01770-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
When is a locally convex space Eberlein-Grothendieck?
Popis výsledku v původním jazyce
The weak topology of a locally convex space (lcs) E is denoted by w. In this paper we undertake a systematic study of those lcs E such that (E, w) is (linearly) Eberlein-Grothendieck (see Definitions 1.2 and 3.1). The following results obtained in our paper play a key role: for every barrelled lcs E, the space (E, w) is Eberlein-Grothendieck (linearly Eberlein-Grothendieck) if and only if E is metrizable (E is normable, respectively). The main applications concern to the space of continuous real-valued functions on a Tychonoff space X endowed with the compact-open topology Ck(X). We prove that (Ck(X) , w) is Eberlein-Grothendieck (linearly Eberlein-Grothen-dieck) if and only if X is hemicompact (X is compact, respectively). Besides this, we show that the class of E for which (E, w) is linearly Eberlein-Grothendieck preserves linear continuous quotients. Various illustrating examples are provided.
Název v anglickém jazyce
When is a locally convex space Eberlein-Grothendieck?
Popis výsledku anglicky
The weak topology of a locally convex space (lcs) E is denoted by w. In this paper we undertake a systematic study of those lcs E such that (E, w) is (linearly) Eberlein-Grothendieck (see Definitions 1.2 and 3.1). The following results obtained in our paper play a key role: for every barrelled lcs E, the space (E, w) is Eberlein-Grothendieck (linearly Eberlein-Grothendieck) if and only if E is metrizable (E is normable, respectively). The main applications concern to the space of continuous real-valued functions on a Tychonoff space X endowed with the compact-open topology Ck(X). We prove that (Ck(X) , w) is Eberlein-Grothendieck (linearly Eberlein-Grothen-dieck) if and only if X is hemicompact (X is compact, respectively). Besides this, we show that the class of E for which (E, w) is linearly Eberlein-Grothendieck preserves linear continuous quotients. Various illustrating examples are provided.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF20-22230L" target="_blank" >GF20-22230L: Banachovy prostory spojitých a lipschitzovských funkcí</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Results in Mathematics
ISSN
1422-6383
e-ISSN
1420-9012
Svazek periodika
77
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
236
Kód UT WoS článku
000873856800003
EID výsledku v databázi Scopus
2-s2.0-85140615299