Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Projection-based guaranteed L2 error bounds for finite element approximations of Laplace eigenfunctions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00570477" target="_blank" >RIV/67985840:_____/23:00570477 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.cam.2023.115164" target="_blank" >https://doi.org/10.1016/j.cam.2023.115164</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cam.2023.115164" target="_blank" >10.1016/j.cam.2023.115164</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Projection-based guaranteed L2 error bounds for finite element approximations of Laplace eigenfunctions

  • Popis výsledku v původním jazyce

    For conforming finite element approximations of the Laplacian eigenfunctions, a fully computable guaranteed error bound in the L2 norm sense is proposed. The bound is based on the a priori error estimate for the Galerkin projection of the conforming finite element method, and has an optimal speed of convergence for the eigenfunctions with the worst regularity. The resulting error estimate bounds the distance of spaces of exact and approximate eigenfunctions and, hence, is robust even in the case of multiple and tightly clustered eigenvalues. The accuracy of the proposed bound is illustrated by numerical examples.

  • Název v anglickém jazyce

    Projection-based guaranteed L2 error bounds for finite element approximations of Laplace eigenfunctions

  • Popis výsledku anglicky

    For conforming finite element approximations of the Laplacian eigenfunctions, a fully computable guaranteed error bound in the L2 norm sense is proposed. The bound is based on the a priori error estimate for the Galerkin projection of the conforming finite element method, and has an optimal speed of convergence for the eigenfunctions with the worst regularity. The resulting error estimate bounds the distance of spaces of exact and approximate eigenfunctions and, hence, is robust even in the case of multiple and tightly clustered eigenvalues. The accuracy of the proposed bound is illustrated by numerical examples.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA20-01074S" target="_blank" >GA20-01074S: Adaptivní metody pro numerické řešení parciálních diferenciálních rovnic: analýza, odhady chyb a iterativní řešiče</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Computational and Applied Mathematics

  • ISSN

    0377-0427

  • e-ISSN

    1879-1778

  • Svazek periodika

    429

  • Číslo periodika v rámci svazku

    September

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    12

  • Strana od-do

    115164

  • Kód UT WoS článku

    000957629700001

  • EID výsledku v databázi Scopus

    2-s2.0-85150189102