Complexity of distances: Theory of generalized analytic equivalence relations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00570779" target="_blank" >RIV/67985840:_____/23:00570779 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/23:10475539
Výsledek na webu
<a href="https://doi.org/10.1142/S0219061322500143" target="_blank" >https://doi.org/10.1142/S0219061322500143</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0219061322500143" target="_blank" >10.1142/S0219061322500143</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Complexity of distances: Theory of generalized analytic equivalence relations
Popis výsledku v původním jazyce
We generalize the notion of analytic/Borel equivalence relations, orbit equivalence relations, and Borel reductions between them to their continuous and quantitative counterparts: analytic/Borel pseudometrics, orbit pseudometrics, and Borel reductions between them. We motivate these concepts on examples and we set some basic general theory. We illustrate the new notion of reduction by showing that the Gromov-Hausdorff distance maintains the same complexity if it is defined on the class of all Polish metric spaces, spaces bounded from below, from above, and from both below and above. Then we show that E1 is not reducible to equivalences induced by orbit pseudometrics, generalizing the seminal result of Kechris and Louveau. We answer in negative a question of Ben Yaacov, Doucha, Nies, and Tsankov on whether balls in the Gromov-Hausdorff and Kadets distances are Borel. In appendix, we provide new methods using games showing that the distance-zero classes in certain pseudometrics are Borel, extending the results of Ben Yaacov, Doucha, Nies, and Tsankov. There is a complementary paper of the authors where reductions between the most common pseudometrics from functional analysis and metric geometry are provided.
Název v anglickém jazyce
Complexity of distances: Theory of generalized analytic equivalence relations
Popis výsledku anglicky
We generalize the notion of analytic/Borel equivalence relations, orbit equivalence relations, and Borel reductions between them to their continuous and quantitative counterparts: analytic/Borel pseudometrics, orbit pseudometrics, and Borel reductions between them. We motivate these concepts on examples and we set some basic general theory. We illustrate the new notion of reduction by showing that the Gromov-Hausdorff distance maintains the same complexity if it is defined on the class of all Polish metric spaces, spaces bounded from below, from above, and from both below and above. Then we show that E1 is not reducible to equivalences induced by orbit pseudometrics, generalizing the seminal result of Kechris and Louveau. We answer in negative a question of Ben Yaacov, Doucha, Nies, and Tsankov on whether balls in the Gromov-Hausdorff and Kadets distances are Borel. In appendix, we provide new methods using games showing that the distance-zero classes in certain pseudometrics are Borel, extending the results of Ben Yaacov, Doucha, Nies, and Tsankov. There is a complementary paper of the authors where reductions between the most common pseudometrics from functional analysis and metric geometry are provided.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Logic
ISSN
0219-0613
e-ISSN
1793-6691
Svazek periodika
23
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
45
Strana od-do
2250014
Kód UT WoS článku
000860032900002
EID výsledku v databázi Scopus
2-s2.0-85130427537