An explicit self-dual construction of complete cotorsion pairs in the relative context
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00571081" target="_blank" >RIV/67985840:_____/23:00571081 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4171/rsmup/118" target="_blank" >https://doi.org/10.4171/rsmup/118</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/RSMUP/118" target="_blank" >10.4171/RSMUP/118</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An explicit self-dual construction of complete cotorsion pairs in the relative context
Popis výsledku v původním jazyce
Let R → A be a map of associative rings, and let (F,C) be a hereditary complete cotorsion pair in R−Mod. Let (FA,CA) be the cotorsion pair in A−Mod in which FA is the class of all left A-modules whose underlying R-modules belong to F. Assuming that the F-resolution dimension of every left R-module is finite and the class F is preserved by the coinduction functor HomR(A,−), we show that CA is the class of all direct summands of left A-modules finitely (co)filtered by A-modules coinduced from R-modules from C. If the class F is closed under countable products and preserved by the functor HomR(A,−), we prove that CA is the class of all direct summands of left A-modules cofiltered by A-modules coinduced from R-modules from C, with the decreasing filtration indexed by the natural numbers. A combined result is also obtained. As an illustration of the main results of the paper, we consider certain cotorsion pairs related to the contraderived and coderived categories of curved DG-modules.
Název v anglickém jazyce
An explicit self-dual construction of complete cotorsion pairs in the relative context
Popis výsledku anglicky
Let R → A be a map of associative rings, and let (F,C) be a hereditary complete cotorsion pair in R−Mod. Let (FA,CA) be the cotorsion pair in A−Mod in which FA is the class of all left A-modules whose underlying R-modules belong to F. Assuming that the F-resolution dimension of every left R-module is finite and the class F is preserved by the coinduction functor HomR(A,−), we show that CA is the class of all direct summands of left A-modules finitely (co)filtered by A-modules coinduced from R-modules from C. If the class F is closed under countable products and preserved by the functor HomR(A,−), we prove that CA is the class of all direct summands of left A-modules cofiltered by A-modules coinduced from R-modules from C, with the decreasing filtration indexed by the natural numbers. A combined result is also obtained. As an illustration of the main results of the paper, we consider certain cotorsion pairs related to the contraderived and coderived categories of curved DG-modules.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-13778S" target="_blank" >GA20-13778S: Symetrie, duality a aproximace v derivované algebraické geometrii a teorii reprezentací</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Rendiconti del Seminario Matematico della Universita di Padova
ISSN
0041-8994
e-ISSN
2240-2926
Svazek periodika
149
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
63
Strana od-do
191-253
Kód UT WoS článku
000980736000008
EID výsledku v databázi Scopus
2-s2.0-85159139827