Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On convergence of numerical solutions for the compressible MHD system with weakly divergence-free magnetic field

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00574184" target="_blank" >RIV/67985840:_____/23:00574184 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1093/imanum/drac035" target="_blank" >https://doi.org/10.1093/imanum/drac035</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/imanum/drac035" target="_blank" >10.1093/imanum/drac035</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On convergence of numerical solutions for the compressible MHD system with weakly divergence-free magnetic field

  • Popis výsledku v původním jazyce

    We study a general convergence theory for the analysis of numerical solutions to a magnetohydrodynamic system describing the time evolution of compressible, viscous, electrically conducting fluids in space dimension d (=2,3). First, we introduce the concept of dissipative weak (DW) solutions and prove the weak-strong uniqueness property for DW solutions, meaning a DW solution coincides with a classical solution emanating from the same initial data on the lifespan of the latter. Next, we introduce the concept of consistent approximations and prove the convergence of consistent approximations towards the DW solution, as well as the classical solution. Interpreting the consistent approximation as the energy stability and consistency of numerical solutions, we have built a nonlinear variant of the celebrated Lax equivalence theorem. Finally, as an application of this theory, we show the convergence analysis of two numerical methods.

  • Název v anglickém jazyce

    On convergence of numerical solutions for the compressible MHD system with weakly divergence-free magnetic field

  • Popis výsledku anglicky

    We study a general convergence theory for the analysis of numerical solutions to a magnetohydrodynamic system describing the time evolution of compressible, viscous, electrically conducting fluids in space dimension d (=2,3). First, we introduce the concept of dissipative weak (DW) solutions and prove the weak-strong uniqueness property for DW solutions, meaning a DW solution coincides with a classical solution emanating from the same initial data on the lifespan of the latter. Next, we introduce the concept of consistent approximations and prove the convergence of consistent approximations towards the DW solution, as well as the classical solution. Interpreting the consistent approximation as the energy stability and consistency of numerical solutions, we have built a nonlinear variant of the celebrated Lax equivalence theorem. Finally, as an application of this theory, we show the convergence analysis of two numerical methods.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-02411S" target="_blank" >GA21-02411S: Řešení nekorektních úloh pohybu stlačitelných tekutin</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IMA Journal of Numerical Analysis

  • ISSN

    0272-4979

  • e-ISSN

    1464-3642

  • Svazek periodika

    43

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    29

  • Strana od-do

    2169-2197

  • Kód UT WoS článku

    000835418400001

  • EID výsledku v databázi Scopus

    2-s2.0-85138478401