Numerical approximation of probabilistically weak and strong solutions of the stochastic total variation flow
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00571182" target="_blank" >RIV/67985556:_____/23:00571182 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.esaim-m2an.org/articles/m2an/abs/2023/02/m2an220087/m2an220087.html" target="_blank" >https://www.esaim-m2an.org/articles/m2an/abs/2023/02/m2an220087/m2an220087.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/m2an/2022089" target="_blank" >10.1051/m2an/2022089</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical approximation of probabilistically weak and strong solutions of the stochastic total variation flow
Popis výsledku v původním jazyce
We propose a fully practical numerical scheme for the simulation of the stochastic total variation flow (STVF). The approximation is based on a stable time-implicit finite element space-time approximation of a regularized STVF equation. The approximation also involves a finite dimensional discretization of the noise that makes the scheme fully implementable on physical hardware. We show that the proposed numerical scheme converges in law to a solution that is defined in the sense of stochastic variational inequalities (SVIs). Under strengthened assumptions the convergence can be show to holds even in probability. As a by product of our convergence analysis we provide a generalization of the concept of probabilistically weak solutions of stochastic partial differential equation (SPDEs) to the setting of SVIs. We also prove convergence of the numerical scheme to a probabilistically strong solution in probability if pathwise uniqueness holds. We perform numerical simulations to illustrate the behavior of the proposed numerical scheme as well as its non-conforming variant in the context of image denoising.
Název v anglickém jazyce
Numerical approximation of probabilistically weak and strong solutions of the stochastic total variation flow
Popis výsledku anglicky
We propose a fully practical numerical scheme for the simulation of the stochastic total variation flow (STVF). The approximation is based on a stable time-implicit finite element space-time approximation of a regularized STVF equation. The approximation also involves a finite dimensional discretization of the noise that makes the scheme fully implementable on physical hardware. We show that the proposed numerical scheme converges in law to a solution that is defined in the sense of stochastic variational inequalities (SVIs). Under strengthened assumptions the convergence can be show to holds even in probability. As a by product of our convergence analysis we provide a generalization of the concept of probabilistically weak solutions of stochastic partial differential equation (SPDEs) to the setting of SVIs. We also prove convergence of the numerical scheme to a probabilistically strong solution in probability if pathwise uniqueness holds. We perform numerical simulations to illustrate the behavior of the proposed numerical scheme as well as its non-conforming variant in the context of image denoising.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-12790S" target="_blank" >GA22-12790S: Stochastické systémy v nekonečné dimensi</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ESAIM. Mathematical Modelling and Numerical Analysis
ISSN
2822-7840
e-ISSN
2804-7214
Svazek periodika
57
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
31
Strana od-do
785-815
Kód UT WoS článku
000959169100009
EID výsledku v databázi Scopus
2-s2.0-85142299302