On convergence of numerical solutions for the compressible MHD system with exactly divergence-free magnetic field
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00562018" target="_blank" >RIV/67985840:_____/22:00562018 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1137/21M1431011" target="_blank" >https://doi.org/10.1137/21M1431011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/21M1431011" target="_blank" >10.1137/21M1431011</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On convergence of numerical solutions for the compressible MHD system with exactly divergence-free magnetic field
Popis výsledku v původním jazyce
We study a general convergence theory for the numerical solutions of compressible viscous and electrically conducting fluids with a focus on numerical schemes that preserve the divergence-free property of magnetic field exactly. Our strategy utilizes the recent concepts of dissipative weak solutions and consistent approximations. First, we show the dissipative weak-strong uniqueness principle, meaning a dissipative weak solution coincides with a classical solution as long as they emanate from the same initial data. Next, we show the convergence of consistent approximation toward the dissipative weak solution and thus the classical solution. Upon interpreting the consistent approximation as the stability and consistency of suitable numerical solutions we have established a generalized Lax equivalence theory: convergence - stability and consistency. Further, to illustrate the application of this theory, we propose two mixed finite volume-finite element methods with exact divergence-free magnetic field. Finally, by showing that solutions of these two schemes are consistent approximations, we conclude their convergence toward the dissipative weak solution and the classical solution.
Název v anglickém jazyce
On convergence of numerical solutions for the compressible MHD system with exactly divergence-free magnetic field
Popis výsledku anglicky
We study a general convergence theory for the numerical solutions of compressible viscous and electrically conducting fluids with a focus on numerical schemes that preserve the divergence-free property of magnetic field exactly. Our strategy utilizes the recent concepts of dissipative weak solutions and consistent approximations. First, we show the dissipative weak-strong uniqueness principle, meaning a dissipative weak solution coincides with a classical solution as long as they emanate from the same initial data. Next, we show the convergence of consistent approximation toward the dissipative weak solution and thus the classical solution. Upon interpreting the consistent approximation as the stability and consistency of suitable numerical solutions we have established a generalized Lax equivalence theory: convergence - stability and consistency. Further, to illustrate the application of this theory, we propose two mixed finite volume-finite element methods with exact divergence-free magnetic field. Finally, by showing that solutions of these two schemes are consistent approximations, we conclude their convergence toward the dissipative weak solution and the classical solution.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-02411S" target="_blank" >GA21-02411S: Řešení nekorektních úloh pohybu stlačitelných tekutin</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Numerical Analysis
ISSN
0036-1429
e-ISSN
1095-7170
Svazek periodika
60
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
2182-2202
Kód UT WoS článku
000862256800008
EID výsledku v databázi Scopus
2-s2.0-85138475265