Topologically semiperfect topological rings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00584364" target="_blank" >RIV/67985840:_____/24:00584364 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/24:10489703
Výsledek na webu
<a href="https://doi.org/10.1007/s10468-023-10217-x" target="_blank" >https://doi.org/10.1007/s10468-023-10217-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10468-023-10217-x" target="_blank" >10.1007/s10468-023-10217-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Topologically semiperfect topological rings
Popis výsledku v původním jazyce
We define topologically semiperfect (complete, separated, right linear) topological rings and characterize them by equivalent conditions. We show that the endomorphism ring of a module, endowed with the finite topology, is topologically semiperfect if and only if the module is decomposable as an (infinite) direct sum of modules with local endomorphism rings. Then we study structural properties of topologically semiperfect topological rings and prove that their topological Jacobson radicals are strongly closed and the related topological quotient rings are topologically semisimple. For the endomorphism ring of a direct sum of modules with local endomorphism rings, the topological Jacobson radical is described explicitly as the set of all matrices of nonisomorphisms. Furthermore, we prove that, over a topologically semiperfect topological ring, all finitely generated discrete modules have projective covers in the category of modules, while all lattice-finite contramodules have projective covers in both the categories of modules and contramodules. We also show that the topological Jacobson radical of a topologically semiperfect topological ring is equal to the closure of the abstract Jacobson radical, and present a counterexample demonstrating that the topological Jacobson radical can be strictly larger than the abstract one. Finally, we discuss the problem of lifting idempotents modulo the topological Jacobson radical and the structure of projective contramodules for topologically semiperfect topological rings.
Název v anglickém jazyce
Topologically semiperfect topological rings
Popis výsledku anglicky
We define topologically semiperfect (complete, separated, right linear) topological rings and characterize them by equivalent conditions. We show that the endomorphism ring of a module, endowed with the finite topology, is topologically semiperfect if and only if the module is decomposable as an (infinite) direct sum of modules with local endomorphism rings. Then we study structural properties of topologically semiperfect topological rings and prove that their topological Jacobson radicals are strongly closed and the related topological quotient rings are topologically semisimple. For the endomorphism ring of a direct sum of modules with local endomorphism rings, the topological Jacobson radical is described explicitly as the set of all matrices of nonisomorphisms. Furthermore, we prove that, over a topologically semiperfect topological ring, all finitely generated discrete modules have projective covers in the category of modules, while all lattice-finite contramodules have projective covers in both the categories of modules and contramodules. We also show that the topological Jacobson radical of a topologically semiperfect topological ring is equal to the closure of the abstract Jacobson radical, and present a counterexample demonstrating that the topological Jacobson radical can be strictly larger than the abstract one. Finally, we discuss the problem of lifting idempotents modulo the topological Jacobson radical and the structure of projective contramodules for topologically semiperfect topological rings.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-13778S" target="_blank" >GA20-13778S: Symetrie, duality a aproximace v derivované algebraické geometrii a teorii reprezentací</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Algebras and Representation Theory
ISSN
1386-923X
e-ISSN
1572-9079
Svazek periodika
27
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
34
Strana od-do
245-278
Kód UT WoS článku
001022143000001
EID výsledku v databázi Scopus
2-s2.0-85164208676