The existence of a weak solution for a compressible multicomponent fluid structure interaction problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00584372" target="_blank" >RIV/67985840:_____/24:00584372 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.matpur.2024.02.007" target="_blank" >https://doi.org/10.1016/j.matpur.2024.02.007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.matpur.2024.02.007" target="_blank" >10.1016/j.matpur.2024.02.007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The existence of a weak solution for a compressible multicomponent fluid structure interaction problem
Popis výsledku v původním jazyce
We analyze a system of PDEs governing the interaction between two compressible mutually noninteracting fluids and a shell of Koiter type encompassing a time dependent 3D domain filled by the fluids. The dynamics of the fluids is modeled by a system resembling compressible Navier-Stokes equations with a physically realistic pressure depending on densities of both the fluids. The shell possesses a non-linear, non-convex Koiter energy. Considering that the densities are comparable initially we prove the existence of a weak solution until the degeneracy of the energy or the self-intersection of the structure occurs for two cases. In the first case the adiabatic exponents are assumed to satisfy max{γ,β}>2, min{γ,β}>0, and the structure involved is assumed to be non-dissipative. For the second case we assume the critical case max{γ,β}≥2 and min{γ,β}>0 and the dissipativity of the structure. The result is achieved in several steps involving, extension of the physical domain, penalization of the interface condition, artificial regularization of the shell energy and the pressure, the almost compactness argument, added structural dissipation and suitable limit passages depending on uniform estimates.
Název v anglickém jazyce
The existence of a weak solution for a compressible multicomponent fluid structure interaction problem
Popis výsledku anglicky
We analyze a system of PDEs governing the interaction between two compressible mutually noninteracting fluids and a shell of Koiter type encompassing a time dependent 3D domain filled by the fluids. The dynamics of the fluids is modeled by a system resembling compressible Navier-Stokes equations with a physically realistic pressure depending on densities of both the fluids. The shell possesses a non-linear, non-convex Koiter energy. Considering that the densities are comparable initially we prove the existence of a weak solution until the degeneracy of the energy or the self-intersection of the structure occurs for two cases. In the first case the adiabatic exponents are assumed to satisfy max{γ,β}>2, min{γ,β}>0, and the structure involved is assumed to be non-dissipative. For the second case we assume the critical case max{γ,β}≥2 and min{γ,β}>0 and the dissipativity of the structure. The result is achieved in several steps involving, extension of the physical domain, penalization of the interface condition, artificial regularization of the shell energy and the pressure, the almost compactness argument, added structural dissipation and suitable limit passages depending on uniform estimates.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-01591S" target="_blank" >GA22-01591S: Matematická teorie a numerická analýza rovnic vazkých newtonovských stlačitelných tekutin</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal de Mathematiques Pures et Appliquees
ISSN
0021-7824
e-ISSN
1776-3371
Svazek periodika
184
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
72
Strana od-do
118-189
Kód UT WoS článku
001206877700001
EID výsledku v databázi Scopus
2-s2.0-85187641241