Iterated Gauss-Seidel GMRES
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00585518" target="_blank" >RIV/67985840:_____/24:00585518 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/24:10493576
Výsledek na webu
<a href="https://doi.org/10.1137/22M1491241" target="_blank" >https://doi.org/10.1137/22M1491241</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/22M1491241" target="_blank" >10.1137/22M1491241</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Iterated Gauss-Seidel GMRES
Popis výsledku v původním jazyce
The GMRES algorithm of Saad and Schultz [SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856--869] is an iterative method for approximately solving linear systems Ax = b, with initial guess x0 and residual r0 = b- Ax0. The algorithm employs the Arnoldi process to generate the Krylov basis vectors (the columns of Vk). It is well known that this process can be viewed as a QR factorization of the matrix Bk = [r0,AVk ] at each iteration. Despite an O(varepsilon)kappa(Bk) loss of orthogonality, for unit roundoff varepsilon and condition number kappa , the modified Gram-Schmidt formulation was shown to be backward stable in the seminal paper by Paige et al. [SIAM J. Matrix Anal. Appl., 28 (2006), pp. 264--284]. We present an iterated Gauss--Seidel formulation of the GMRES algorithm (IGS-GMRES) based on the ideas of Ruhe [Linear Algebra Appl., 52 (1983), pp. 591--601] and S'wirydowicz et al. [Numer. Linear Algebra Appl., 28 (2020), pp. 1--20]. IGS-GMRES maintains orthogonality to the level O(varepsilon)kappa(Bk) or O(varepsilon), depending on the choice of one or two iterations, for two Gauss--Seidel iterations, the computed Krylov basis vectors remain orthogonal to working accuracy and the smallest singular value of Vk remains close to one. The resulting GMRES method is thus backward stable. We show that IGS-GMRES can be implemented with only a single synchronization point per iteration, making it relevant to large-scale parallel computing environments. We also demonstrate that, unlike MGS-GMRES, in IGS-GMRES the relative Arnoldi residual corresponding to the computed approximate solution no longer stagnates above machine precision even for highly nonnormal systems.
Název v anglickém jazyce
Iterated Gauss-Seidel GMRES
Popis výsledku anglicky
The GMRES algorithm of Saad and Schultz [SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856--869] is an iterative method for approximately solving linear systems Ax = b, with initial guess x0 and residual r0 = b- Ax0. The algorithm employs the Arnoldi process to generate the Krylov basis vectors (the columns of Vk). It is well known that this process can be viewed as a QR factorization of the matrix Bk = [r0,AVk ] at each iteration. Despite an O(varepsilon)kappa(Bk) loss of orthogonality, for unit roundoff varepsilon and condition number kappa , the modified Gram-Schmidt formulation was shown to be backward stable in the seminal paper by Paige et al. [SIAM J. Matrix Anal. Appl., 28 (2006), pp. 264--284]. We present an iterated Gauss--Seidel formulation of the GMRES algorithm (IGS-GMRES) based on the ideas of Ruhe [Linear Algebra Appl., 52 (1983), pp. 591--601] and S'wirydowicz et al. [Numer. Linear Algebra Appl., 28 (2020), pp. 1--20]. IGS-GMRES maintains orthogonality to the level O(varepsilon)kappa(Bk) or O(varepsilon), depending on the choice of one or two iterations, for two Gauss--Seidel iterations, the computed Krylov basis vectors remain orthogonal to working accuracy and the smallest singular value of Vk remains close to one. The resulting GMRES method is thus backward stable. We show that IGS-GMRES can be implemented with only a single synchronization point per iteration, making it relevant to large-scale parallel computing environments. We also demonstrate that, unlike MGS-GMRES, in IGS-GMRES the relative Arnoldi residual corresponding to the computed approximate solution no longer stagnates above machine precision even for highly nonnormal systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-06159S" target="_blank" >GA23-06159S: Vírové struktury: pokročilé metody identifikace a efektivní numerické simulace</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Scientific Computing
ISSN
1064-8275
e-ISSN
1095-7197
Svazek periodika
46
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
"S254"-"S279"
Kód UT WoS článku
001308408900002
EID výsledku v databázi Scopus
2-s2.0-85192678897