Narrow systems revisited
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00586663" target="_blank" >RIV/67985840:_____/24:00586663 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1112/blms.13037" target="_blank" >https://doi.org/10.1112/blms.13037</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/blms.13037" target="_blank" >10.1112/blms.13037</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Narrow systems revisited
Popis výsledku v původním jazyce
We investigate connections between set-theoretic compactness principles and cardinal arithmetic, introducing and studying generalized narrow system properties as a way to approach two open questions about two-cardinal tree properties. The first of these questions asks whether the strong tree property at a regular cardinal (Formula presented.) implies the singular cardinals hypothesis ((Formula presented.)) above (Formula presented.). We show here that a certain narrow system property at (Formula presented.) that is closely related to the strong tree property, and holds in all known models thereof, suffices to imply (Formula presented.) above (Formula presented.). The second of these questions asks whether the strong tree property can consistently hold simultaneously at all regular cardinals (Formula presented.). We show here that the analogous question about the generalized narrow system property has a positive answer. We also highlight some connections between generalized narrow system properties and the existence of certain strongly unbounded subadditive colorings.
Název v anglickém jazyce
Narrow systems revisited
Popis výsledku anglicky
We investigate connections between set-theoretic compactness principles and cardinal arithmetic, introducing and studying generalized narrow system properties as a way to approach two open questions about two-cardinal tree properties. The first of these questions asks whether the strong tree property at a regular cardinal (Formula presented.) implies the singular cardinals hypothesis ((Formula presented.)) above (Formula presented.). We show here that a certain narrow system property at (Formula presented.) that is closely related to the strong tree property, and holds in all known models thereof, suffices to imply (Formula presented.) above (Formula presented.). The second of these questions asks whether the strong tree property can consistently hold simultaneously at all regular cardinals (Formula presented.). We show here that the analogous question about the generalized narrow system property has a positive answer. We also highlight some connections between generalized narrow system properties and the existence of certain strongly unbounded subadditive colorings.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-04683S" target="_blank" >GA23-04683S: Kompaktnost v teorii množin a její aplikace v algebře a teorii grafů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Bulletin of the London Mathematical Society
ISSN
0024-6093
e-ISSN
1469-2120
Svazek periodika
56
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
1967-1987
Kód UT WoS článku
001194040300001
EID výsledku v databázi Scopus
2-s2.0-85189641179