Estimating error norms in CG-like algorithms for least-squares and least-norm problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00587710" target="_blank" >RIV/67985840:_____/24:00587710 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/24:10490854
Výsledek na webu
<a href="https://doi.org/10.1007/s11075-023-01691-x" target="_blank" >https://doi.org/10.1007/s11075-023-01691-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11075-023-01691-x" target="_blank" >10.1007/s11075-023-01691-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimating error norms in CG-like algorithms for least-squares and least-norm problems
Popis výsledku v původním jazyce
In Meurant et al. (Numer. Algorithms 88(3), 1337–1359, 2021), we presented an adaptive estimate for the energy norm of the error in the conjugate gradient (CG) method. Here we consider algorithms for solving linear approximation problems with a general, possibly rectangular matrix that are based on applying CG to a system with a positive (semi-)definite matrix built from the original matrix. We discuss algorithms based on Hestenes–Stiefel-like implementation (often called CGLS and CGNE in the literature) as well as on bidiagonalization (LSQR and CRAIG), and both unpreconditioned and preconditioned variants. Each algorithm minimizes a certain quantity at each iteration (within the current Krylov subspace), that is related to some error norm. We call this “the quantity of interest”. We show that the adaptive estimate used in CG can be extended for these algorithms to estimate the quantity of interest. Throughout, we emphasize the applicability of the estimate during computations in finite-precision arithmetic. We carefully derive the relations from which the estimate is constructed, without exploiting the global orthogonality that is not preserved during computation. We show that the resulting estimate preserves its key properties: it can be cheaply evaluated, and it is numerically reliable in finite-precision arithmetic under some mild assumptions. These properties make the estimate suitable for use in stopping the iterations. The numerical experiments confirm the robustness and satisfactory behaviour of the estimate.
Název v anglickém jazyce
Estimating error norms in CG-like algorithms for least-squares and least-norm problems
Popis výsledku anglicky
In Meurant et al. (Numer. Algorithms 88(3), 1337–1359, 2021), we presented an adaptive estimate for the energy norm of the error in the conjugate gradient (CG) method. Here we consider algorithms for solving linear approximation problems with a general, possibly rectangular matrix that are based on applying CG to a system with a positive (semi-)definite matrix built from the original matrix. We discuss algorithms based on Hestenes–Stiefel-like implementation (often called CGLS and CGNE in the literature) as well as on bidiagonalization (LSQR and CRAIG), and both unpreconditioned and preconditioned variants. Each algorithm minimizes a certain quantity at each iteration (within the current Krylov subspace), that is related to some error norm. We call this “the quantity of interest”. We show that the adaptive estimate used in CG can be extended for these algorithms to estimate the quantity of interest. Throughout, we emphasize the applicability of the estimate during computations in finite-precision arithmetic. We carefully derive the relations from which the estimate is constructed, without exploiting the global orthogonality that is not preserved during computation. We show that the resulting estimate preserves its key properties: it can be cheaply evaluated, and it is numerically reliable in finite-precision arithmetic under some mild assumptions. These properties make the estimate suitable for use in stopping the iterations. The numerical experiments confirm the robustness and satisfactory behaviour of the estimate.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-06159S" target="_blank" >GA23-06159S: Vírové struktury: pokročilé metody identifikace a efektivní numerické simulace</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Numerical Algorithms
ISSN
1017-1398
e-ISSN
1572-9265
Svazek periodika
97
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
28
Strana od-do
1-28
Kód UT WoS článku
001394187000001
EID výsledku v databázi Scopus
2-s2.0-85175989927