Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Polish spaces of Banach spaces: Complexity of isometry and isomorphism classes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00599029" target="_blank" >RIV/67985840:_____/24:00599029 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11320/24:10492949

  • Výsledek na webu

    <a href="https://doi.org/10.1017/S1474748023000440" target="_blank" >https://doi.org/10.1017/S1474748023000440</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S1474748023000440" target="_blank" >10.1017/S1474748023000440</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Polish spaces of Banach spaces: Complexity of isometry and isomorphism classes

  • Popis výsledku v původním jazyce

    We study the complexities of isometry and isomorphism classes of separable Banach spaces in the Polish spaces of Banach spaces, recently introduced and investigated by the authors in [14]. We obtain sharp results concerning the most classical separable Banach spaces. We prove that the infinite-dimensional separable Hilbert space is characterized as the unique separable infinite-dimensional Banach space whose isometry class is closed, and also as the unique separable infinitedimensional Banach space whose isomorphism class is Fσ. For p ∈ [1,2) (2,∞), we show that the isometry classes of Lp[0,1] and ℓp are G-complete sets and Fσ-complete sets, respectively. Then we show that the isometry class of c0 is an Fσ-complete set. Additionally, we compute the complexities of many other natural classes of separable Banach spaces, for instance, the class of separable Lp,λ+-spaces, for p,λ ≥ 1, is shown to be a G-set, the class of superreflexive spaces is shown to be an Fσ-set, and the class of spaces with local Π-basis structure is shown to be a Σ06 -set. The paper is concluded with many open problems and suggestions for a future research.

  • Název v anglickém jazyce

    Polish spaces of Banach spaces: Complexity of isometry and isomorphism classes

  • Popis výsledku anglicky

    We study the complexities of isometry and isomorphism classes of separable Banach spaces in the Polish spaces of Banach spaces, recently introduced and investigated by the authors in [14]. We obtain sharp results concerning the most classical separable Banach spaces. We prove that the infinite-dimensional separable Hilbert space is characterized as the unique separable infinite-dimensional Banach space whose isometry class is closed, and also as the unique separable infinitedimensional Banach space whose isomorphism class is Fσ. For p ∈ [1,2) (2,∞), we show that the isometry classes of Lp[0,1] and ℓp are G-complete sets and Fσ-complete sets, respectively. Then we show that the isometry class of c0 is an Fσ-complete set. Additionally, we compute the complexities of many other natural classes of separable Banach spaces, for instance, the class of separable Lp,λ+-spaces, for p,λ ≥ 1, is shown to be a G-set, the class of superreflexive spaces is shown to be an Fσ-set, and the class of spaces with local Π-basis structure is shown to be a Σ06 -set. The paper is concluded with many open problems and suggestions for a future research.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of the Institute of Mathematics of Jussieu

  • ISSN

    1474-7480

  • e-ISSN

    1475-3030

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    39

  • Strana od-do

    1919-1957

  • Kód UT WoS článku

    001112779800001

  • EID výsledku v databázi Scopus

    2-s2.0-85179087321