Geodesic metrics for RBF approximation of some physical quantities measured on sphere
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00599934" target="_blank" >RIV/67985840:_____/24:00599934 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.21136/AM.2024.0051-24" target="_blank" >https://doi.org/10.21136/AM.2024.0051-24</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/AM.2024.0051-24" target="_blank" >10.21136/AM.2024.0051-24</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Geodesic metrics for RBF approximation of some physical quantities measured on sphere
Popis výsledku v původním jazyce
The radial basis function (RBF) approximation is a rapidly developing field of mathematics. In the paper, we are concerned with the measurement of scalar physical quantities at nodes on sphere in the 3D Euclidean space and the spherical RBF interpolation of the data acquired. We employ a multiquadric as the radial basis function and the corresponding trend is a polynomial of degree 2 considered in Cartesian coordinates. Attention is paid to geodesic metrics that define the distance of two points on a sphere. The choice of a particular geodesic metric function is an important part of the construction of interpolation formula. We show the existence of an interpolation formula of the type considered. The approximation formulas of this type can be useful in the interpretation of measurements of various physical quantities. We present an example concerned with the sampling of anisotropy of magnetic susceptibility having extensive applications in geosciences and demonstrate the advantages and drawbacks of the formulas chosen, in particular the strong dependence of interpolation results on condition number of the matrix of the system considered and on round-off errors in general.
Název v anglickém jazyce
Geodesic metrics for RBF approximation of some physical quantities measured on sphere
Popis výsledku anglicky
The radial basis function (RBF) approximation is a rapidly developing field of mathematics. In the paper, we are concerned with the measurement of scalar physical quantities at nodes on sphere in the 3D Euclidean space and the spherical RBF interpolation of the data acquired. We employ a multiquadric as the radial basis function and the corresponding trend is a polynomial of degree 2 considered in Cartesian coordinates. Attention is paid to geodesic metrics that define the distance of two points on a sphere. The choice of a particular geodesic metric function is an important part of the construction of interpolation formula. We show the existence of an interpolation formula of the type considered. The approximation formulas of this type can be useful in the interpretation of measurements of various physical quantities. We present an example concerned with the sampling of anisotropy of magnetic susceptibility having extensive applications in geosciences and demonstrate the advantages and drawbacks of the formulas chosen, in particular the strong dependence of interpolation results on condition number of the matrix of the system considered and on round-off errors in general.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applications of Mathematics
ISSN
0862-7940
e-ISSN
1572-9109
Svazek periodika
69
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
12
Strana od-do
621-632
Kód UT WoS článku
001306175200001
EID výsledku v databázi Scopus
2-s2.0-85203197509