Witnessing flows in arithmetic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00601777" target="_blank" >RIV/67985840:_____/24:00601777 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1017/S0960129524000185" target="_blank" >https://doi.org/10.1017/S0960129524000185</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0960129524000185" target="_blank" >10.1017/S0960129524000185</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Witnessing flows in arithmetic
Popis výsledku v původním jazyce
One of the elegant achievements in the history of proof theory is the characterization of the provably total recursive functions of an arithmetical theory by its proof-theoretic ordinal as a way to measure the time complexity of the functions. Unfortunately, the machinery is not sufficiently fine-grained to be applicable on the weak theories, on the one hand and to capture the bounded functions with bounded definitions of strong theories, on the other. In this paper, we develop such a machinery to address the bounded theorems of both strong and weak theories of arithmetic. In the first part, we provide a refined version of ordinal analysis to capture the feasibly definable and bounded functions that are provably total in PA +Uβ≺α TI(≺β), the extension of Peano arithmetic by transfinite induction up to the ordinals below α. Roughly speaking, we identify the functions as the ones that are computable by a sequence of PV-provable polynomial time modifications on an initial polynomial time value, where the computational steps are indexed by the ordinals below α, decreasing by the modifications. In the second part, and choosing l ≤ k, we use similar technique to capture the functions with bounded definitions in the theory T2k (resp. Sk2) as the functions computable by exponentially (resp. polynomially) long sequence of PVk−l+1-provable reductions between l-turn games starting with an explicit PVk−l+1-provable winning strategy for the first game.
Název v anglickém jazyce
Witnessing flows in arithmetic
Popis výsledku anglicky
One of the elegant achievements in the history of proof theory is the characterization of the provably total recursive functions of an arithmetical theory by its proof-theoretic ordinal as a way to measure the time complexity of the functions. Unfortunately, the machinery is not sufficiently fine-grained to be applicable on the weak theories, on the one hand and to capture the bounded functions with bounded definitions of strong theories, on the other. In this paper, we develop such a machinery to address the bounded theorems of both strong and weak theories of arithmetic. In the first part, we provide a refined version of ordinal analysis to capture the feasibly definable and bounded functions that are provably total in PA +Uβ≺α TI(≺β), the extension of Peano arithmetic by transfinite induction up to the ordinals below α. Roughly speaking, we identify the functions as the ones that are computable by a sequence of PV-provable polynomial time modifications on an initial polynomial time value, where the computational steps are indexed by the ordinals below α, decreasing by the modifications. In the second part, and choosing l ≤ k, we use similar technique to capture the functions with bounded definitions in the theory T2k (resp. Sk2) as the functions computable by exponentially (resp. polynomially) long sequence of PVk−l+1-provable reductions between l-turn games starting with an explicit PVk−l+1-provable winning strategy for the first game.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Structures in Computer Science
ISSN
0960-1295
e-ISSN
1469-8072
Svazek periodika
34
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
37
Strana od-do
578-614
Kód UT WoS článku
001315748700001
EID výsledku v databázi Scopus
2-s2.0-85205112857