Molecular simulations of alkali metal halide hydrates
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F23%3A00572687" target="_blank" >RIV/67985858:_____/23:00572687 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/44555601:13440/23:43897803
Výsledek na webu
<a href="https://hdl.handle.net/11104/0343298" target="_blank" >https://hdl.handle.net/11104/0343298</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.molliq.2023.122197" target="_blank" >10.1016/j.molliq.2023.122197</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Molecular simulations of alkali metal halide hydrates
Popis výsledku v původním jazyce
It has been known that classical molecular simulations of concentrated aqueous electrolyte solutions are limited by the ability of microscopic models (force fields) to predict the correct values of salt solubility, which also requires their ability to faithfully model crystalline salts. Previous simulation studies have often focused on the solubility of anhydrous crystalline salts, but virtually never on crystalline hydrates, except for hydrohalite, NaCl⋅2H2O, despite there are at least 23 experimentally known different hydrates that can precipitate from alkali-halide solutions. This work attempts to fill this gap in hydrate simulation studies by systematically investigating the ability of the best force fields selected to qualitatively capture the stability of the individual phases of various alkali-halide hydrates and to quantitatively predict their lattice parameters. First, we show that the nonpolarizable force fields studied often fail to model hydrates containing the Li+ cations, whereas the polarizable force fields recently refined by us are able to model all the hydrates except for LiCl⋅H2O. Second, we further refine our FFs for Li+ to yield stable LiCl⋅H2O. Third, our simulations clarify the positions of the Li+ cations in the ???? phases of LiBr⋅H2O and LiI⋅H2O, whose distributions were previously described only as stochastic. As a byproduct, a simple and reliable simulation methodology suitable also for complex polarizable models and nonorthorhombic crystal lattices is proposed and tested, based on simulations of finite crystals floating in vacuum.
Název v anglickém jazyce
Molecular simulations of alkali metal halide hydrates
Popis výsledku anglicky
It has been known that classical molecular simulations of concentrated aqueous electrolyte solutions are limited by the ability of microscopic models (force fields) to predict the correct values of salt solubility, which also requires their ability to faithfully model crystalline salts. Previous simulation studies have often focused on the solubility of anhydrous crystalline salts, but virtually never on crystalline hydrates, except for hydrohalite, NaCl⋅2H2O, despite there are at least 23 experimentally known different hydrates that can precipitate from alkali-halide solutions. This work attempts to fill this gap in hydrate simulation studies by systematically investigating the ability of the best force fields selected to qualitatively capture the stability of the individual phases of various alkali-halide hydrates and to quantitatively predict their lattice parameters. First, we show that the nonpolarizable force fields studied often fail to model hydrates containing the Li+ cations, whereas the polarizable force fields recently refined by us are able to model all the hydrates except for LiCl⋅H2O. Second, we further refine our FFs for Li+ to yield stable LiCl⋅H2O. Third, our simulations clarify the positions of the Li+ cations in the ???? phases of LiBr⋅H2O and LiI⋅H2O, whose distributions were previously described only as stochastic. As a byproduct, a simple and reliable simulation methodology suitable also for complex polarizable models and nonorthorhombic crystal lattices is proposed and tested, based on simulations of finite crystals floating in vacuum.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-03380S" target="_blank" >GA22-03380S: Vodné směsi se solemi při extrémních podmínkách - přesné experimenty, molekulární simulace a modelování</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Molecular Liquids
ISSN
0167-7322
e-ISSN
1873-3166
Svazek periodika
384
Číslo periodika v rámci svazku
15 August
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
122197
Kód UT WoS článku
001013727400001
EID výsledku v databázi Scopus
2-s2.0-85161020400