Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Molecular simulations of alkali metal halide hydrates

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F23%3A00572687" target="_blank" >RIV/67985858:_____/23:00572687 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/44555601:13440/23:43897803

  • Výsledek na webu

    <a href="https://hdl.handle.net/11104/0343298" target="_blank" >https://hdl.handle.net/11104/0343298</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.molliq.2023.122197" target="_blank" >10.1016/j.molliq.2023.122197</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Molecular simulations of alkali metal halide hydrates

  • Popis výsledku v původním jazyce

    It has been known that classical molecular simulations of concentrated aqueous electrolyte solutions are limited by the ability of microscopic models (force fields) to predict the correct values of salt solubility, which also requires their ability to faithfully model crystalline salts. Previous simulation studies have often focused on the solubility of anhydrous crystalline salts, but virtually never on crystalline hydrates, except for hydrohalite, NaCl⋅2H2O, despite there are at least 23 experimentally known different hydrates that can precipitate from alkali-halide solutions. This work attempts to fill this gap in hydrate simulation studies by systematically investigating the ability of the best force fields selected to qualitatively capture the stability of the individual phases of various alkali-halide hydrates and to quantitatively predict their lattice parameters. First, we show that the nonpolarizable force fields studied often fail to model hydrates containing the Li+ cations, whereas the polarizable force fields recently refined by us are able to model all the hydrates except for LiCl⋅H2O. Second, we further refine our FFs for Li+ to yield stable LiCl⋅H2O. Third, our simulations clarify the positions of the Li+ cations in the ???? phases of LiBr⋅H2O and LiI⋅H2O, whose distributions were previously described only as stochastic. As a byproduct, a simple and reliable simulation methodology suitable also for complex polarizable models and nonorthorhombic crystal lattices is proposed and tested, based on simulations of finite crystals floating in vacuum.

  • Název v anglickém jazyce

    Molecular simulations of alkali metal halide hydrates

  • Popis výsledku anglicky

    It has been known that classical molecular simulations of concentrated aqueous electrolyte solutions are limited by the ability of microscopic models (force fields) to predict the correct values of salt solubility, which also requires their ability to faithfully model crystalline salts. Previous simulation studies have often focused on the solubility of anhydrous crystalline salts, but virtually never on crystalline hydrates, except for hydrohalite, NaCl⋅2H2O, despite there are at least 23 experimentally known different hydrates that can precipitate from alkali-halide solutions. This work attempts to fill this gap in hydrate simulation studies by systematically investigating the ability of the best force fields selected to qualitatively capture the stability of the individual phases of various alkali-halide hydrates and to quantitatively predict their lattice parameters. First, we show that the nonpolarizable force fields studied often fail to model hydrates containing the Li+ cations, whereas the polarizable force fields recently refined by us are able to model all the hydrates except for LiCl⋅H2O. Second, we further refine our FFs for Li+ to yield stable LiCl⋅H2O. Third, our simulations clarify the positions of the Li+ cations in the ???? phases of LiBr⋅H2O and LiI⋅H2O, whose distributions were previously described only as stochastic. As a byproduct, a simple and reliable simulation methodology suitable also for complex polarizable models and nonorthorhombic crystal lattices is proposed and tested, based on simulations of finite crystals floating in vacuum.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-03380S" target="_blank" >GA22-03380S: Vodné směsi se solemi při extrémních podmínkách - přesné experimenty, molekulární simulace a modelování</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Molecular Liquids

  • ISSN

    0167-7322

  • e-ISSN

    1873-3166

  • Svazek periodika

    384

  • Číslo periodika v rámci svazku

    15 August

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    10

  • Strana od-do

    122197

  • Kód UT WoS článku

    001013727400001

  • EID výsledku v databázi Scopus

    2-s2.0-85161020400