Heat capacity measurements by a Setaram μDSC3 evo microcalorimeter: estimation of deviation in the measurement, advanced data analysis by mathematical gnostics, and prediction by the artificial neural network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F24%3A00598190" target="_blank" >RIV/67985858:_____/24:00598190 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10973-024-13505-w" target="_blank" >https://link.springer.com/article/10.1007/s10973-024-13505-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10973-024-13505-w" target="_blank" >10.1007/s10973-024-13505-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Heat capacity measurements by a Setaram μDSC3 evo microcalorimeter: estimation of deviation in the measurement, advanced data analysis by mathematical gnostics, and prediction by the artificial neural network
Popis výsledku v původním jazyce
The aim of the work is to study the variation in the isobaric heat capacity measurement due to changes in the amount of sample and the calibration standard using a Setaram μDSC3 evo microcalorimeter batch cells to provide a guideline toward the selection of the sample amount to minimize heat capacity measurement error in μDSC. Moreover, overall variation, variation due to the sample amount, and variation due to the calibration standard (reference) amount in heat capacity measurement were estimated for different amounts of the sample or/and the calibration standard material. In the present work, heat capacity measurements were taken for [C4mim][Tf2N] (1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide) ionicnliquid as a sample material and 1-butanol as a calibration standard. A novel non-statistical approach, mathematical gnostics (MG), was used for data analysis of measured heat capacities data. Moreover, the artificial neural network (ANN) model was developed to predict the deviation in the heat capacity measurement with 99.83% accuracy and 0.9939 R2 score. The Python package PyCpep based on the trained ANN model was developed to predict the deviation in the heat capacity measurement.
Název v anglickém jazyce
Heat capacity measurements by a Setaram μDSC3 evo microcalorimeter: estimation of deviation in the measurement, advanced data analysis by mathematical gnostics, and prediction by the artificial neural network
Popis výsledku anglicky
The aim of the work is to study the variation in the isobaric heat capacity measurement due to changes in the amount of sample and the calibration standard using a Setaram μDSC3 evo microcalorimeter batch cells to provide a guideline toward the selection of the sample amount to minimize heat capacity measurement error in μDSC. Moreover, overall variation, variation due to the sample amount, and variation due to the calibration standard (reference) amount in heat capacity measurement were estimated for different amounts of the sample or/and the calibration standard material. In the present work, heat capacity measurements were taken for [C4mim][Tf2N] (1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide) ionicnliquid as a sample material and 1-butanol as a calibration standard. A novel non-statistical approach, mathematical gnostics (MG), was used for data analysis of measured heat capacities data. Moreover, the artificial neural network (ANN) model was developed to predict the deviation in the heat capacity measurement with 99.83% accuracy and 0.9939 R2 score. The Python package PyCpep based on the trained ANN model was developed to predict the deviation in the heat capacity measurement.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Thermal Analysis and Calorimetry
ISSN
1388-6150
e-ISSN
1588-2926
Svazek periodika
150
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
HU - Maďarsko
Počet stran výsledku
13
Strana od-do
313-325
Kód UT WoS článku
001309307400001
EID výsledku v databázi Scopus
—