A Route to Superior Performance of a Nanoplasmonic Biosensor: Consideration of Both Photonic and Mass Transport Aspects
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985882%3A_____%2F18%3A00490475" target="_blank" >RIV/67985882:_____/18:00490475 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1021/acsphotonics.7b01319" target="_blank" >http://dx.doi.org/10.1021/acsphotonics.7b01319</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsphotonics.7b01319" target="_blank" >10.1021/acsphotonics.7b01319</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Route to Superior Performance of a Nanoplasmonic Biosensor: Consideration of Both Photonic and Mass Transport Aspects
Popis výsledku v původním jazyce
Optical biosensors based on plasmonic nano structures present a promising alternative to conventional biosensing methods and provide unmatched possibilities for miniaturization and high-throughput analysis. Previous works on the topic, however, have been overwhelmingly directed toward elucidating the optical performance of such sensors, with little emphasis on the topic of mass transport. To date, there exists no examination, experimental nor theoretical, of the bioanalytical performance of such sensors (in terms of detection limits) that simultaneously addresses both optical and mass transport aspects in a quantitative manner. In this work we present a universal model that describes the smallest concentration that can be detected by a nanoplasmonic biosensor. Accounting for both optical and mass transport aspects, this model establishes a relationship between bioanalytical performance and the biosensor's design parameters. We employ the model to optimize the performance of a nanoplasmonic DNA biosensor consisting of randomly distributed gold nanorods on a glass substrate. Through both experimental and theoretical results, we show that the proper design of a nanostructured sensing substrate is one that maximizes mass transport efficiency while preserving the quality of the optical readout. All results are compared with those obtained using a conventional SPR biosensor. We show that an optimized nanoplasmonic substrate allows for the detection of DNA at concentrations of an order of magnitude lower with respect to an SPR biosensor
Název v anglickém jazyce
A Route to Superior Performance of a Nanoplasmonic Biosensor: Consideration of Both Photonic and Mass Transport Aspects
Popis výsledku anglicky
Optical biosensors based on plasmonic nano structures present a promising alternative to conventional biosensing methods and provide unmatched possibilities for miniaturization and high-throughput analysis. Previous works on the topic, however, have been overwhelmingly directed toward elucidating the optical performance of such sensors, with little emphasis on the topic of mass transport. To date, there exists no examination, experimental nor theoretical, of the bioanalytical performance of such sensors (in terms of detection limits) that simultaneously addresses both optical and mass transport aspects in a quantitative manner. In this work we present a universal model that describes the smallest concentration that can be detected by a nanoplasmonic biosensor. Accounting for both optical and mass transport aspects, this model establishes a relationship between bioanalytical performance and the biosensor's design parameters. We employ the model to optimize the performance of a nanoplasmonic DNA biosensor consisting of randomly distributed gold nanorods on a glass substrate. Through both experimental and theoretical results, we show that the proper design of a nanostructured sensing substrate is one that maximizes mass transport efficiency while preserving the quality of the optical readout. All results are compared with those obtained using a conventional SPR biosensor. We show that an optimized nanoplasmonic substrate allows for the detection of DNA at concentrations of an order of magnitude lower with respect to an SPR biosensor
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10610 - Biophysics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-06785S" target="_blank" >GA15-06785S: Regulační úseky nukleových kyselin - polymorfismus, dynamika a interakce</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Photonics
ISSN
2330-4022
e-ISSN
—
Svazek periodika
5
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
1019-1025
Kód UT WoS článku
000428356400047
EID výsledku v databázi Scopus
2-s2.0-85044317759