Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Cerium oxide catalyzed disproportionation of hydrogen peroxide: a closer look at the reaction intermediate

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985882%3A_____%2F24%3A00584292" target="_blank" >RIV/67985882:_____/24:00584292 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62156489:43210/24:43924498

  • Výsledek na webu

    <a href="https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202304012" target="_blank" >https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202304012</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/chem.202304012" target="_blank" >10.1002/chem.202304012</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Cerium oxide catalyzed disproportionation of hydrogen peroxide: a closer look at the reaction intermediate

  • Popis výsledku v původním jazyce

    Cerium oxide nanoparticles (CNPs) have recently gained increasing interest as redox enzyme-mimetics to scavenge the intracellular excess of reactive oxygen species, including hydrogen peroxide (H2O2). Despite the extensive exploration, there remains a notable discrepancy regarding the interpretation of observed redshift of UV-Visible spectroscopy due to H2O2 addition and the catalase-mimicking mechanism of CNPs. To address this question, we investigated the reaction mechanism by taking a closer look at the reaction intermediate during the catalase mimicking reaction. In this study, we present evidence demonstrating that in aqueous solutions, H2O2 adsorption at CNP surface triggers the formation of stable intermediates known as cerium-peroxo (Ce-O22-) and/or cerium-hydroperoxo (Ce-OOH-) complexes as resolved by Raman scattering and UV-Visible spectroscopy. Polymer coating presents steric hinderance for H2O2 accessibility to the solid-liquid interface limiting further intermediate formation. We demonstrate in depth that the catalytic reactivity of CNPs in the H2O2 disproportionation reaction increases with the Ce(III)-fraction and decreases in the presence of polymer coatings. The developed approach using UV-Visible spectroscopy for the characterization of the surface peroxide species can potentially serve as a foundation for determining the catalytic reactivity of CNPs in the disproportionation of H2O2.nnThis study focuses on the reaction mechanism of H2O2 disproportionation by cerium oxide nanoparticles (CNP). In aqueous dispersions, H2O2 adsorption at CNP interfaces triggers the formation of stable intermediates known as cerium-peroxo complexes. The CNP catalytic reactivity is explored, showing an increase with Ce(III)-fraction and a decrease in the presence of polymer coatings, offering insights for potential nanomedicine applications.image

  • Název v anglickém jazyce

    Cerium oxide catalyzed disproportionation of hydrogen peroxide: a closer look at the reaction intermediate

  • Popis výsledku anglicky

    Cerium oxide nanoparticles (CNPs) have recently gained increasing interest as redox enzyme-mimetics to scavenge the intracellular excess of reactive oxygen species, including hydrogen peroxide (H2O2). Despite the extensive exploration, there remains a notable discrepancy regarding the interpretation of observed redshift of UV-Visible spectroscopy due to H2O2 addition and the catalase-mimicking mechanism of CNPs. To address this question, we investigated the reaction mechanism by taking a closer look at the reaction intermediate during the catalase mimicking reaction. In this study, we present evidence demonstrating that in aqueous solutions, H2O2 adsorption at CNP surface triggers the formation of stable intermediates known as cerium-peroxo (Ce-O22-) and/or cerium-hydroperoxo (Ce-OOH-) complexes as resolved by Raman scattering and UV-Visible spectroscopy. Polymer coating presents steric hinderance for H2O2 accessibility to the solid-liquid interface limiting further intermediate formation. We demonstrate in depth that the catalytic reactivity of CNPs in the H2O2 disproportionation reaction increases with the Ce(III)-fraction and decreases in the presence of polymer coatings. The developed approach using UV-Visible spectroscopy for the characterization of the surface peroxide species can potentially serve as a foundation for determining the catalytic reactivity of CNPs in the disproportionation of H2O2.nnThis study focuses on the reaction mechanism of H2O2 disproportionation by cerium oxide nanoparticles (CNP). In aqueous dispersions, H2O2 adsorption at CNP interfaces triggers the formation of stable intermediates known as cerium-peroxo complexes. The CNP catalytic reactivity is explored, showing an increase with Ce(III)-fraction and a decrease in the presence of polymer coatings, offering insights for potential nanomedicine applications.image

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10402 - Inorganic and nuclear chemistry

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chemistry - A European Journal

  • ISSN

    0947-6539

  • e-ISSN

    1521-3765

  • Svazek periodika

    30

  • Číslo periodika v rámci svazku

    14

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    11

  • Strana od-do

    202304012

  • Kód UT WoS článku

    001144435100001

  • EID výsledku v databázi Scopus

    2-s2.0-85182647220