Structural Losses, Structural Realism and the Stability of Lie Algebras
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985955%3A_____%2F22%3A00548829" target="_blank" >RIV/67985955:_____/22:00548829 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.shpsa.2021.11.003" target="_blank" >https://doi.org/10.1016/j.shpsa.2021.11.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.shpsa.2021.11.003" target="_blank" >10.1016/j.shpsa.2021.11.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Structural Losses, Structural Realism and the Stability of Lie Algebras
Popis výsledku v původním jazyce
One of the key assumptions associated with structural realism is the claim that successful scientific theories approximately preserve their structurally based content as they are progressively developed and that this content alone can explain their relevant predictions. The precise way in which these theories are preserved is not trivial but, according to this realist thesis, any kind of structural loss should not occur among theoretical transitions. Although group theory has been proven effective in accounting for preserved structures in the context of physics, structural realists are confronted with the fact that even group-theoretic structures are not immune to these structural discontinuities. Under such circumstances, my contribution consists in a two-fold task. Firstly, I will establish a general condition at the level of the group-theoretic structure to avoid the pessimistic induction argument by appealing to Lie algebra deformation and stability theory. Secondly, I will provide a case study associated with quantum-relativistic kinematics to demonstrate that this condition is actually satisfied. Specifically, through this case study I will support the claim that if the full Lie algebras of our current successful theories are stable, it is possible to disregard any kind of structural loss in the future and explain the relevant successful predictions in a way that we can support structural realism accordingly.
Název v anglickém jazyce
Structural Losses, Structural Realism and the Stability of Lie Algebras
Popis výsledku anglicky
One of the key assumptions associated with structural realism is the claim that successful scientific theories approximately preserve their structurally based content as they are progressively developed and that this content alone can explain their relevant predictions. The precise way in which these theories are preserved is not trivial but, according to this realist thesis, any kind of structural loss should not occur among theoretical transitions. Although group theory has been proven effective in accounting for preserved structures in the context of physics, structural realists are confronted with the fact that even group-theoretic structures are not immune to these structural discontinuities. Under such circumstances, my contribution consists in a two-fold task. Firstly, I will establish a general condition at the level of the group-theoretic structure to avoid the pessimistic induction argument by appealing to Lie algebra deformation and stability theory. Secondly, I will provide a case study associated with quantum-relativistic kinematics to demonstrate that this condition is actually satisfied. Specifically, through this case study I will support the claim that if the full Lie algebras of our current successful theories are stable, it is possible to disregard any kind of structural loss in the future and explain the relevant successful predictions in a way that we can support structural realism accordingly.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
60301 - Philosophy, History and Philosophy of science and technology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Studies in History and Philosophy of Science
ISSN
0039-3681
e-ISSN
1879-2510
Svazek periodika
—
Číslo periodika v rámci svazku
91
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
28-40
Kód UT WoS článku
000744244700003
EID výsledku v databázi Scopus
2-s2.0-85119509598