Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Structural Losses, Structural Realism and the Stability of Lie Algebras

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985955%3A_____%2F22%3A00548829" target="_blank" >RIV/67985955:_____/22:00548829 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.shpsa.2021.11.003" target="_blank" >https://doi.org/10.1016/j.shpsa.2021.11.003</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.shpsa.2021.11.003" target="_blank" >10.1016/j.shpsa.2021.11.003</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Structural Losses, Structural Realism and the Stability of Lie Algebras

  • Popis výsledku v původním jazyce

    One of the key assumptions associated with structural realism is the claim that successful scientific theories approximately preserve their structurally based content as they are progressively developed and that this content alone can explain their relevant predictions. The precise way in which these theories are preserved is not trivial but, according to this realist thesis, any kind of structural loss should not occur among theoretical transitions. Although group theory has been proven effective in accounting for preserved structures in the context of physics, structural realists are confronted with the fact that even group-theoretic structures are not immune to these structural discontinuities. Under such circumstances, my contribution consists in a two-fold task. Firstly, I will establish a general condition at the level of the group-theoretic structure to avoid the pessimistic induction argument by appealing to Lie algebra deformation and stability theory. Secondly, I will provide a case study associated with quantum-relativistic kinematics to demonstrate that this condition is actually satisfied. Specifically, through this case study I will support the claim that if the full Lie algebras of our current successful theories are stable, it is possible to disregard any kind of structural loss in the future and explain the relevant successful predictions in a way that we can support structural realism accordingly.

  • Název v anglickém jazyce

    Structural Losses, Structural Realism and the Stability of Lie Algebras

  • Popis výsledku anglicky

    One of the key assumptions associated with structural realism is the claim that successful scientific theories approximately preserve their structurally based content as they are progressively developed and that this content alone can explain their relevant predictions. The precise way in which these theories are preserved is not trivial but, according to this realist thesis, any kind of structural loss should not occur among theoretical transitions. Although group theory has been proven effective in accounting for preserved structures in the context of physics, structural realists are confronted with the fact that even group-theoretic structures are not immune to these structural discontinuities. Under such circumstances, my contribution consists in a two-fold task. Firstly, I will establish a general condition at the level of the group-theoretic structure to avoid the pessimistic induction argument by appealing to Lie algebra deformation and stability theory. Secondly, I will provide a case study associated with quantum-relativistic kinematics to demonstrate that this condition is actually satisfied. Specifically, through this case study I will support the claim that if the full Lie algebras of our current successful theories are stable, it is possible to disregard any kind of structural loss in the future and explain the relevant successful predictions in a way that we can support structural realism accordingly.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    60301 - Philosophy, History and Philosophy of science and technology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Studies in History and Philosophy of Science

  • ISSN

    0039-3681

  • e-ISSN

    1879-2510

  • Svazek periodika

  • Číslo periodika v rámci svazku

    91

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    13

  • Strana od-do

    28-40

  • Kód UT WoS článku

    000744244700003

  • EID výsledku v databázi Scopus

    2-s2.0-85119509598